

1

18F-FDG autoradiography enhancement with CMOS sensor

Truong Nguyen Pham, Virgile Bekaert, Christian Finck, Patrice Marchand, David Brasse, Frédéric Boisson, Patrice Laquerriere

 Département Radiobiologie, Hadronthérapie et Imagerie Moléculaire Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France **truong.nguyen-pham@iphc.cnrs.fr**

15th Rencontres du Vietnam International Conference on Medical Physics and School ugust 3, 2019, ICISE, Ouy Nhon, Vietnam

Outline

- ▶ Introduction
- ▸ Materials and methods
- ▸ Results and discussion
- ▶ Conclusions and perspective

 Context

- ▸ Positron emission tomography (PET):
	- functional imaging
	- pico-molar detection
	- spatial resolution 1 mm in preclinical research

 Biodistribution of 18F-FDG for a mouse: not fasted, not warmed, no anesthesia.

 Fueger, Barbara J., et al. *Journal of Nuclear Medicine***. 2006**

Context

- ▶ Biodistribution at brain scale?
- ▸ Limitation of the spatial resolution
- ▸ System with sub-millimeter resolution scale and good sensitivity

 Homogenous or specific uptake?

 Fueger, Barbara J., et al. *Journal of Nuclear Medicine***. 2006**

 Context

▸ Autoradiography, a method to map the 2D distribution in a radiolabeled *ex-vivo* tissue

 Distribution of 18F-FDG in a mouse with phosphor plate.

State of art autoradiography

Characteristic of the method used for AR with 18F.

 Difficulties of the autoradiography

▸ Range of positrons emitted from the tissue in the medium: water, silicon etc..

▸ Limitation of the spatial resolution caused by scattering in the medium and longer β pathlengths due to kinetic energy

▸ Blurring effect

 International Commission on Radiation Units and Measurements. Report 37. *Stopping Powers for Electrons and Positrons*

Context

- ▸ Improve the visualisation using deconvolution algorithm
- ▸ Need to create a pseudo-PSF
- ▸ Ringing effect known as Gibbs phenomenon
- ▶ Bad quantitative intensity conservation

 Deconvolution for tumor section image of HT29 human xenograft on nude rat containing hypoxia tracer 124I-IAZGP (iodoazomycin galactopyranoside) . (a) Original DAR image of the tumor section. (b) Restored image using the R-L algorithm .

Zhang, Mutian, et al. *Medical physics.* **2008**

- ▸ To perform autoradiography with CMOS sensor Mimosa-28, designed for high energy physics (the STAR PXL detector)
	- \cdot Spatial resolution 4 μ m and efficiency 100% with MIP 120 GeV π - (Minimum Ionisation Particle)
- \triangleright Improve the image with MLEM algorithm (Maximum Likelihood Expectation Maximization)
	- · Conservation of the intensity after each iteration

 Fluorine 18

- ▸ A source of positrons β⁺ (97%)
- ▸ Half-life 109.8 min (≃ 2h)
- \triangleright E max β + = 634 keV
- \triangleright E mean β + = 250 keV

 Radiotracer: 2-Deoxy-2-[18F]fluoroglucose (FDG)

- ▸ Radiotracer: coupling between radioactive atom and a vector
- ▸ FDG: analogue of glucose
- ▸ Metabolism of glucose in the cell tissue

 Mimosa-28, Minimum Ionizing particle MOS Active pixel sensor (IPHC)

Characteristics of the Mimosa-28

 Valin, I. et al, Journal of Instrumentation, 2012

 Principle of detection

 *Sensors for the Detection of the Elementary Particles***, 2007**

 Linearity and efficiency

- ▶ ¹⁸F solution in a paper with
- a known activity measured by ISOMED2000
- ▸ Probability of β+ emission
- 97%
- ▶ Counting the hits.sec-1 in function of the activity to test the linearity
- ▸ Efficiency: ratio between hit per sec / number β+ per sec

 Spatial resolution, capacity of a system to distinct two closest points sources

▸ Experimental setup:

absorbing edge method

- ▸ Variable distance between source and sensor.
- \rightarrow Source ¹⁸F between two microscope slides.

From above

¹⁵ **Lauria, Adele, et al. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2007**

 Spatial resolution, capacity of a system to distinct two closest points sources

▸ ERF (Edge Response Function) with the projection on x-axis.

$$
ERF(x) = \frac{1}{2} \left(1 + \text{erf}\left(\frac{x - \mu}{\sigma \sqrt{2}}\right) \right)
$$

$$
FWHM = 2.3548\sigma
$$

 Autoradiography with PET scan

- ▸ Weight: **402,8 ± 0.1 mg**
- ▸ Activity: **407 kBq ± 5 %**
- ▸ Cut the brain into section **50 µm** with **vibratome Leica VT1200 S**
- ▸ Optical image of the block face with a **camera Canon macro lens**
- ▸ Putting the slice on the Mimosa-28 sensor

 ***according to the animal ethics committees CREMEAS, Strasbourg, France**

 Reconstruction algorithm

- ▸ Object F, distribution of the radiotracer in the tissue.
- \triangleright Transformation R, modelled by the interaction of the positrons with the sensor and the medium.

 \blacktriangleright Image p j.

 Lange, Kenneth, and Richard Carson. *J. Comput. Assist. Tomogr.* **1984**

Reconstruction algorithm

▶ Iterative reconstruction MLEM (Maximum Likelihood Expectation Maximisation) introduced by K. Lange and R. Carson

▸ *F* estimated object $\hat{F}_{i}^{(n+1)} = \frac{\hat{F}_{i}^{(n)}}{\sum_{i} R_{ji}} \sum_{j} R_{ji} \frac{p_{j}}{\sum_{i} R_{jk} \hat{F}_{k}^{(n)}}$ ▸ *R* matrix of the system ▸ *P* projected image **Initialisation** $F^{(0)}$ **Iteration n+1 Estimated objet Projection** Regularisation **Stopping criteria: Reached after** *n* **iterations** $\sum_k R_{jk} F_k^{(n)}$ **Structural SIMilarity index Estimation the correction Back-projection** $-\sum_j R_{ji} \frac{p_j}{\sum_k R_{jk}F_k^{(n)}}$ $\sum_k R_{jk} F_k^{(n)}$ $\sum_i R_{ji}$ 19

 Lange, Kenneth, and Richard Carson. *J. Comput. Assist. Tomogr.* **1984**

 Creation matrix of the system

▸ *R* matrix of the system: probability to detect in the pixel *j* (sensor) a positron emitted from a voxel *i* (tissue) with an isotropic and uniform emission

with

 Number of positrons detected in the pixel *j* .

Number of positrons

20 N_i N_i emitted from the voxel *i*.

Creation matrix of the system

- ▶ Simulation Monte-Carlo GATE to generate the positrons and the interaction with the sensor using Penelope model
- ▸ 1 billion positrons emitted with kinetic energy following 18F energy spectrum
- ▸ Modelling the response of the sensor (electron's diffusion in the sensitive layer, Janesick's model)

 Baro, J., et al. Nuclear Instruments and Methods in Physics Research, 1995

 Linearity, efficiency and spatial resolution

- \rightarrow 44.2 \pm 0,4 % (0.44 counts/sec/Bq) with an activity between 3 kBq and 400 kBq
- \triangleright Solid angle lower than 2π sr
- ▸ Loss signal caused by dead layers: paper, electronic parts

 Linearity, efficiency and spatial resolution

 Autoradiography with PET scan

 Biodistribution of 18F-FDG after 1 h biodistribution with 10 min acquisition time. A : Eye, B : Brain

- ▸ Important uptake in the eyes. Consumption of glucose by the Harderian gland in the eye stimulated by the light
- ▸ Homogenous uptake in the brain with the PET scan caused by the limitation of the spatial resolution

 Autoradiography with PET scan

▸ Specific uptake in different region of the brain section (striata, cortex)

 (a) Autoradiography of the brain section 50 µm with 2 h acquisition time. Colour bar represents the number of hits in the pixel. (b) Optical image of the cross section. A : corpus callosum, B : striata, C : cortex.

 Autoradiography with PET scan

▸ Specific uptake in different region of the brain section (striata, cortex)

 (a) Autoradiography of the brain section 50 µm with 2 h acquisition time. Colour bar represents the number of hits in the pixel. (b) Optical image of the cross section. A : corpus callosum, B : striata, C : cortex.

 MLEM algorithm

Autoradiography with PET scan

- ▶ Specific uptake in different region of the brain section
- ▸ Improve the sharpness with MLEM algorithm (limit of the tissue, morphologie)
- ▸ Reduction of the scattering (blurring effect)
- ▶ Regularisation to decrease noise

Conclusions and perspective

- ▸ Autoradiography: a method to visualise at brain scale
- ▸ Good efficiency and a spatial resolution similar with the others systems
- ▸ Multimodality: PET scan and autoradiography (functional imaging) with the same radiotracer, and optical imaging (anatomical imaging)
- ▸ MLEM algorithm: increasing the sharpness in the image by decreasing the blurring effect cause by the scattering of the particles

▸ Measure the performance of the MLEM algorithm (uniformity, efficiency, spatial resolution)

Thank you for your attention

 We thank the PICSEL group for providing the technical support. We thank Lionel Thomas, Bruno Jessel for the help with the mouse and the MI-CNRS Imag'In for financial support.

truong.nguyen-pham@iphc.cnrs.fr

 We thank the PICSEL group for providing the technical support. We thank Lionel Thomas, Bruno Jessel for the help with the mouse and the MI-CNRS Imag'In for financial support.

 Multiple scattering

$$
\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} \ z \ \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]
$$

Source : PDG

AR Fusion

 Linearity, efficiency and spatial resolution

▶ Efficiency : attenuation in the medium: paper, film, dead layer.

▸ Resolution : diffusion of β + in the medium, secondary emission (photons and low electrons).

Spatial resolution vs dimension sensor

 Cabello, J., & Wells, K., *A Monte Carlo investigation into the fundamental limitations of digital β -autoradiography: Considerations for detector design* , 2007.

Emulsion film

- ▸ Deposition of energy in the film.
- ▸ Metallization of silver halide crystals.
- ▶ Revelation step

Emulsion film

- ▸ Deposition of energy in the film.
- ▸ Metallization of silver halide crystals.
- ▶ Revelation step

Phosphor plate

- ▶ Electron excited by an incidence particle.
- ▸ Trapped in a trap state.
- ▶ Liberation by a laser beam.
- ▶ Deexcitation of electron.
- ▶ Emission a visible photon.

Gaseous detector

▸ Ionisation of the gas by an incidence particle.

▶ Acceleration and multiplication of the electrons by an electric field. **Tissue**

Scintillating sheet

GATE Simulation

State of art autoradiography

Characteristic of the method used for AR with 18 F.

 State of art autoradiography

Characteristic of the method used for AR with 18 F.

 Difficulties of the autoradiography

 Multiple scattering modifies the trajectory of a charged particle.

 Difficulties of the autoradiography

