Simulation of liver cancer treatment using ⁹⁰Y microspheres based on anatomical image segmentation technique and Geant4 toolkit

Speaker: Ha Nguyen Hong

QuyNhon, August 2019

Treatment techniques

- Surgery
- Chemotherapy
- Radioembolization (with ⁹⁰Y microspheres)

⁹⁰γ: Pure-beta emitter; $E_{\beta max}$ = 2.28 MeV; beta-penetration depth in tissue: 11.4 mm

Source: SIRTex

Source: SIRTex

Radioembolization with ⁹⁰Y

STEPS TO IMPLEMENT 43 Tc 99m (6.007 h) 0.143 aT 1.37.1010 0.141 1. Clinical examination ly 141 keV 89% 0.0 43 Tc 99 (2.1.105 a) 2. Pre-treatment - CT and SPECT scan - Using ^{99m}Tc-MAA (Macroaggregated albumin) through microcatheter - Calculate lungs shunt fraction (LSF) 3. Activity planning of ⁹⁰Y - BSA; Partition model; MIRD methods.

4. Treatment

1. Empiric Method Calculation:

Tumor ≤ 25 % of the liver mass $\rightarrow 2$ GBq for whole liver

Tumor >25% but <50 % of the liver mass \rightarrow 2.5 GBq for whole liver

Tumor >50 % of liver mass \rightarrow 3 GBq for whole liver

2. Body Surface Area (BSA) Method Calculation :

$$BSA[m^{2}] = 0.20247 \times (height[m])^{0.725} \times (weight[kg])^{0.425}$$
(1)

$$A[GBq] = (BSA - 0.2) + \frac{\text{vol of tumor}}{\text{vol of tumor} + \text{vol of liver}}$$

(2)

Europe PMC Funders Group Author Manuscript J Diagn Imaging Ther. Author manuscript; available in PMC 2016 May 13.

Published in final edited form as: J Diagn Imaging Ther. 2015 ; 2(2): 1–34. doi:10.17229/jdit.2015-0428-016.

A review of 3D image-based dosimetry, technical considerations and emerging perspectives in ⁹⁰Y microsphere therapy

Jim O' Doherty^{1,*}

¹PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom

J Diagn Imaging Ther. 2015 ; 2(2): 1–34. DOI:10.17229/jdit.2015-0428-016

3.2 Limitations of current dosimetry models

Recent work has noted that there is no known association correlating a patient's BSA with liver volume, tumour volume or radiation sensitivity [53]. Inherent in the BSA method is the assumption of a fixed mean TN liver ratio of 1 for all patients, sacrificing accuracy for simplicity, although patients typically present with a more favourable ratio [19].

ARTICLE IN PRESS

CLINICAL STUDY

Limitations of Body Surface Area–Based Activity Calculation for Radioembolization of Hepatic Metastases in Colorectal Cancer

Marnix G.E.H. Lam, MD, PhD, John D. Louie, MD, Mohamed H.K. Abdelmaksoud, MD, MS, George A. Fisher, MD, PhD, Cheryl D. Cho-Phan, MD, and Daniel Y. Sze, MD, PhD

J Vasc Interv Radiol. 2014 Jul;25(7):1085-93.

Results: The standard BSA-based administered activity (range, 0.85–2.58 GBq) did not correlate with D_{WL} (mean, 50.4 Gy; range, 29.8–74.7 Gy; r = -0.037; P = .809) because liver weight was highly variable (mean, 1.89 kg; range, 0.94–3.42 kg) and strongly correlated with D_{WL} (r = -0.724; P < .001) but was not accounted for in the BSA method. Patients with larger livers were relatively underdosed, and patients with smaller livers were relatively overdosed. Patients who received $D_{WL} > 50$ Gy experienced more toxicity and adverse events (> grade 2 liver toxicity, 46% vs 17%; P < .05) but also responded better to the treatment than patients who received $D_{WL} < 50$ Gy (disease control, 88% vs 24%; P < .01).

3. Partition Model Calculation

$$A_{\text{total -lung}} = \frac{D_{\text{lung}} \times M_{\text{lung}} \times \text{LSF}}{49670}$$
(3)

$$A_{\text{total -normal liver}} = \frac{D_{\text{normal liver}} \times (M_{\text{normal liver}} + T: N \times M_{\text{tumor}})}{49670 \times (1 - \text{LSF})}$$
(4)

$$T:N = (A_{tumor} / M_{tumor}) / (A_{normal \ liver} / M_{normal \ liver})$$
(5)

D_{lung}: Limiting lung dose – 25Gy

D_{normal liver} : Limiting normal liver dose – 80 Gy (70 Gy for patients with cirrhosis)

LSF: Lungs shunt fraction (%)

Europe PMC Funders Group Author Manuscript *J Diagn Imaging Ther*. Author manuscript; available in PMC 2016 May 13.

Published in final edited form as: J Diagn Imaging Ther. 2015 ; 2(2): 1–34. doi:10.17229/jdit.2015-0428-016.

A review of 3D image-based dosimetry, technical considerations and emerging perspectives in ⁹⁰Y microsphere therapy

Jim O' Doherty^{1,*}

¹PET Imaging Centre, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom

J Diagn Imaging Ther. 2015 ; 2(2): 1–34. doi:10.17229/jdit.2015-0428-016

A recent study compared activity planning and dosimetry in 26 patients with RMS using 3 models (BSA, empirical and PM) showing that maximum differences in injected activities between BSA and PM methods vary from 123%-417% [55].

MIRD Method:

MIRD Pamphlet 5 mathematical phantom

Research objective

STEPS TO IMPLEMENT

- **1. Clinical examination**
- 2. Pre-treatment
 - CT and SPECT scan
 - Using ^{99m}Tc-MAA (Macroaggregated albumin) through microcatheter
 - Calculate lungs shunt fraction (LSF)
- **3. Activity planning of** ⁹⁰Y
 - BSA; Partition model; MIRD methods.
 - Image-based simulation method

4. Treatment

OEDIPE - Outil d'Evaluation de la Dose Interne PErsonnalisée

- Based on MCNPX
- Simulated on human voxel model and ORNL mathematical model

Figure 2. Two-dimensional voxel-based representation of the liver and kidneys of the adult ORNL model with two voxel sampling sizes: $1.58 \times 1.58 \times 5 \text{ mm}^3$ (a) and $3.16 \times 3.16 \times 5 \text{ mm}^3$ (b).

Table 4. Parameters to study the effect of voxel sampling and voxel size.

Geometry	Adult ORNL model	Adult ORNL model	Adult ORNL model	
Geometry definition	Mathematical	Voxel-based $1.58 \times 1.58 \times 5 \text{ mm}^3$	Voxel-based $3.16 \times 3.16 \times 5 \text{ mm}^3$	
Calculation method	Monte Carlo	Monte Carlo	Monte Carlo	
Calculation code	MCNPX2.5e	MCNPX2.5e	MCNPX2.5e	

Figure 1. Voxel-based Zubal model (a) and the standard adult ORNL mathematical model (b). (This figure is in colour only in the electronic version)

Table 1. Oedipe interface validation parameters.

	SCMS (Yoriyaz)	riyaz) Oedipe	
Geometry	Zubal	Zubal	
Geometry definition	Voxel-based	Voxel-based	
Calculation method	Monte Carlo	Monte Carlo	
Calculation code	MCNP4B	MCNPX2.5e	

Table 2. Study parameters for the calculation of Monte Carlo codes specificities.

	Petoussi-Henß	Oedipe	
Geometry	Zubal	Zubal	
Geometry definition	Voxel-based	Voxel-based	
Calculation method	Monte Carlo	Monte Carlo	
Calculation code	GSF code	MCNPX2.5e	

Validation of a personalized dosimetric evaluation tool (Oedipe) for targeted radiotherapy

VIDA toolkit

• Based on Geant4

TABLE 3. DOSE FACTORS FOR SOURCE AND TARGET ORGANS IN THE RADIATION DOSE ASSESSMENT RESOURCE ADULT MALE PHANTOM

Organ		DF (mGy/MBq-s)					
		VIDA	OLINDA	% Diff ^a	VIDA	OLINDA	% Diff
Source	Target	8	¹³¹ I			⁹⁰ Y	- 1004 - 11
Liver	Lungs	8.05E-07	8.09E-07	-0.5			
	Liver	2.27E-05	2.28E-05	-0.4	7.89E-05	8.05E-05	-2.0
	Kidneys	1.11E-06	1.14E-06	-2.7	(<u></u>))		
	Spleen	3.05E-07	3.29E-07	-7.6			
	Pancreas	1.09E-06	1.11E-06	-1.8			
Spleen	Lungs	4.67E-07	4.70E-07	-0.6			
r	Liver	3.07E-07	3.16E-07	-2.9	(<u> </u>	2	<u>8 - 12</u>
	Kidneys	2.40E-06	2.36E-06	1.7			
	Spleen	2.35E-04	2.32E-04	1.3	9.16E-04	9.26E-04	-1.1
	Pancreas	1.35E-06	1.36E-06	-0.7	1. 	-	
Pancreas	Lungs	5.36E-07	5.62E-07	-4.7	s		
	Liver	1.08E-06	1.13E-06	-4.5			
	Kidneys	8.31E-07	8.84E-07	-6.2	s 		
	Spleen	1.35E-06	1.43E-06	- 5.8		8 8 C 7 C	
	Pancreas	2.44E-04	2.49E-04	-2.0	9.49E-04	9.94E-04	-4.6
						10 CONT	

FIG. 3. Anterior views of the RADAR adult male NURBS phantom. NURBS, Non-Uniform Rational B-Spline; RADAR, Radiation Dose Assessment Resource.

VIDA: A Voxel-Based Dosimetry Method for Targeted Radionuclide Therapy Using Geant4

3D-RD toolkit

- Based on EGSnrc , extension of prior dosimetry package 3D-ID
- Images input: SPECT, PET, CT

Figure 4. DVH comparison between FLUKA, 3D-RD and MCID DMC simulation in water for a VOI including a hot sphere in the PET_1 phantom. Error bars represent 1 sigma uncertainty; when not visible, they are fully included in the lines.

MCID - MC integration Internal Dosimetric (based on MCNP5)

Figure 3. Profile comparison between FLUKA, 3D-RD and MCID DMC simulation in water (PET_1 phantom). Error bars are not visible because they are fully included in the lines, except for the region outside the phantom (at the profile edges) exhibiting low statistic.

Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images

Geometry

construct

Individual 3D imaging (e.g., CT)

- Segmentation
- Edge detection
- 3D reconstruction

How to validate?

Electron Density Phantom model M062M

HU Fidelity of the AquilionLB: https://www.wienkav.at/kav/kfj/91033454/physik/ct/edens.htm

How to validate?

Using SPECT image

^{99m}Tc-MAA SPECT imaging

Using SPECT-CT image

Geant4, an most advance OOP toolkit for the simulation of the passage of particles through matter. Its areas of application include high energy, nuclear and accelerator physics, as well as studies in medical physics

Geant 4 Medical applications

Radiotherapy with external beams, IMRT

Courtesy of GATE Collaboration

PET, SPECT

Activate Window Go to PC settings to a

Decay model

Week interaction: $n \rightarrow p + e^- + v_e^-$

In Geant4: G4RadioactiveDecay() provides:

- nuclear half-lives,
- nuclear level structure for the parent or daughter nuclide
- decay branching ratios
- the energy of the decay process.

These data taken from the Evaluated Nuclear Structure Data File (ENSDF) - National Nuclear Data Center - Brookhaven National Laboratory

Decay model

G4RadioactiveDecay()

The shape of the energy spectrum of the emitted electron:

$$\frac{d^2n}{dEdp_e} = (E_0 - E_e)^2 E_e p_e F(Z, E_e) S(Z, E_0, E_e)$$

Where:

- E₀: Endpoint energy of decay, taken from ENSDF data
- E_e, p_e: Emitted electron energy and momentum
- Z: atomic number

F: Fermi function
$$F(Z, E_e) = 2(1+\gamma) (2p_e R)^{2\gamma-2} e^{\pm \pi \alpha Z E_e/p_e} \frac{|\Gamma(\gamma + i\alpha Z E_e/p_e)|^2}{\Gamma(2\gamma+1)^2}$$

• S: Shape factor

• R: nuclear radius

•
$$\gamma = \sqrt{1 - (\alpha Z)^2}$$

- α : fine structure constant
- $|\Gamma(\gamma + i\alpha ZE_e/p_e)|^2$ computed using Wilkinson approximation

Transport model

G4Livermorelonisation

- Shell structure
- Semi-empirical model, data from EEDL

Ex.:
$$\frac{dE}{dx} = \sum_{s} \left(\sigma_{s}(T) \frac{\int_{0.1e}^{Tc} t \frac{d\sigma}{dt} dt}{\int_{0.1eV}^{T_{max}} \frac{d\sigma}{dt} dt} \right)$$

- T: incident energy.
- T_c: secondary electron production threshold
- T_{max} = 0.5T : maximum energy transferred to a secondary electron.
- $\sigma_s(T)$: total cross-section for the shell s at incident kinetic energy T

Transport model

Ionisation cross section for water with cut 10 eV

FIG. 2. Total scattering cross section, Q_T , of H₂O. A comparison is made of the experimental cross sections obtained by Szmytkowski (Ref. 21), Sueoka *et al.* (Ref. 26), Zecca *et al.* (Ref. 22), Nishimura and Yano (Ref. 23), and Saglam and Aktekin (Refs. 24 and 25). The theoretical elastic cross section obtained by Tennyson *et al.* (Ref. 28) is also shown for comparison.

TABLE 3. Recommended total scattering cross section for electron collisions with H_2O

Energy (eV)	Cross section (10^{-16} cm^2)	Energy (eV)	Cross section (10^{-16} cm^2)	Energy (eV)	Cross section (10^{-16} cm^2)
1	110	8	25.8	50	10.5
1.2	95.3	8.5	25.5	60	9.7
1.4	82.0	9	24.8	70	8.9
1.6	71.0	9.5	23.7	80	8.3
1.8	62.3	10	23.2	90	7.7
2	54.2	11	22.8	100	7.1
2.2	51.1	12	22.4	120	6.5
2.5	46.9	13	21.7	150	5.6
2.8	43.2	14	21.0	200	4.8
3.1	39.8	15	20.3	250	4.2
3.4	37.2	16	19.6	289	3.78
3.7	34.8	17	19.1	361	3.19
4	33.5	18	18.6	400	2.93
4.5	31.4	19	18.3	484	2.53
5	30.2	20	17.7	500	2.48
5.5	29.1	22	16.9	576	2.20
6	28.4	25	15.6	676	1.91
6.5	27.3	30	14.1	782	1.75
7	26.8	35	13.1	900	1.55
7.5	26.5	40	12.2	1000	1.42

Develope new semi-empirical model based on Livermore

Cross Sections for Electron Collisions with Water Molecules

Transport model

How to validate?

• Dose

•••

- Cross section
- Mean free path

oro with

٠

Compare with experimental result published.

Applications and Perspectives

Comparision

Preliminary result

Preliminary result

Geometry constructed from DICOM CT of a patient treated in Hospital 108 (Vietnam)

Generate MAA distribution based on SPECT.

- Using ITK toolkit: itkImageSeriesReader class
- A new class implemented into G4 for generating MAA distribution

Preliminary result

Exported to gdd format for being displayed by gMocren

