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Dark matter and Galaxy Rotation Curves

o Large Spiral Galaxies
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o Dwarf Spiral Galaxies

Carignan et al.

Well known baryonic contribution
Dark matter dominates those objects
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Dark Matter in Cluster

o X-ray Observations — presence of hot gas (P, p, T)
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o Weak lensing

Confirms the X-ray results!

Alexandre Arbey JOGLy 2 — Lyon — October 17th, 2019 2/ 36



Introduction Primordial black holes ing radiation Gamma ray constraints
00@0000000 O ¢

Bullet Cluster

Dark Matter is independent from baryonic matter!
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Cosmological Standard Model

mann-Lemaitre Universe

@ Homogeneous and Isotropic Universe

d
@ Robertson-Walker metric: d72 = dt? — a(t)? { r

@ Adiabatic cosmic fluids: matter, radiation, dark energy, ... (p, P)

H? = (3)2 = % —_ ﬁ
@ Einstein-Friedmann equations: a 3 a?
a A7 G
- = fT( +3P)
8w G k 8 G
Today (Ho Hubble-Lemaitre constant): HZ = ——— p° — — = o=
3 ap 3
00
Cosmological parameters (for each component): Qcomp = w(;np
Pc

constraints

2
T2 + r2d6? + r? sin? Gdcpz}
— kr

P2 ¢ critical density
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Cosmological Parameters
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Dark Matter Candidates

o Massive neutrinos

o Weakly Interacting Massive Particles (WIMPs)

In particular, many particle physics models provide WIMP
candidates!

@ Other particles/fields: axions, dark fluids, ...

Exotic and non-baryonic particles

@ Black Holes

Not possible with stellar and supermassive black holes

o Modified Gravitation Laws
MOND, TeVeS, Scalar-tensor theories, ...
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Cold dark matter: WIMPs

Weakly Interacting Massive Particles

Good cosmological behaviour and good galaxy formation
Rotation curves at large radius for large galaxy OK
Clusters OK

No direct detection yet

Clumpiness problems? (clumps formation, cuspy center, ...)
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Cold dark matter: WIMPs

Weakly Interacting Massive Particles

Good cosmological behaviour and good galaxy formation
Rotation curves at large radius for large galaxy OK
Clusters OK

No direct detection yet

Clumpiness problems? (clumps formation, cuspy center, ...)

Beyond the Standard Model

@ No SM particle can constitute DM
@ Many BSM theories predict the existence of WIMPs
@ No new particle discovered yet...
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black holes Hawking rad
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History of the Universe
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# sy

Recombination (and emission of cosmic microwave backgroud) constitutes a limit

between the dark times and the observable Universe
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@ How to describe the beginning of the Universe (~ Planck energy)?
Quantum gravity? Brane theories? Other gravitation theories?

e What did drive inflation in the early Universe? When did it end?

e Do/did topological defects (magnetic monopoles, domain walls, ...) exist?
@ What did happen during leptogenesis?

e What did happen during baryogenesis?

o Where does the particle-antiparticle asymmetry come from?

o Did the relic dark matter particle freeze-out happen, how and when?

@ Do we fully understand the properties of the QCD-dominated plasma?

o Do we fully understand Big-Bang nucleosynthesis?

What about (Primordial) Black Holes??
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Black holes

In the following we place ourselves in the natural unit system with c = h = kg (= G) = 1.

Schwarzschild metric for a static compact object of mass M
2 2GM dr’ 2,2 | 2, 2
dr —(1 . dt? 1_QGMfr(d0 + sin® 0 d¢°)
r

One defines the Schwarzschild radius: Rs = 2GM.
If the mass M is completely within r < Rs, the radius r = Rs consistutes a horizon.

— Black Hole!
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Black holes

In the following we place ourselves in the natural unit system with c = h = kg (= G) = 1.

Schwarzschild metric for a static compact object of mass M

r _ . 2GM
r

One defines the Schwarzschild radius: Rs = 2GM.
If the mass M is completely within r < Rs, the radius r = Rs consistutes a horizon.

2
dr? = (1 QGM) a2 — — 9 2(40% 4 sin? 0 do?)
1

— Black Holel )

Kerr metric for a static compact object of mass M and angular momentum J

dr* = (di— asin29d¢)2 (% +do >

2 sin2(9

—((r* + 2%)d¢ — adt)

a=J/M, X =r*+a’cos’0, A=r>—Rsr+a°, Rs =2GM
The horizon exists but is deformed and flattened— Kerr (Rotating) Black Hole!

A
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Observed black holes

Three types of black holes have been discovered

o Stellar black holes
BHs originated in the explosion of massive stars/supernovae, ~ 3 — 100M,
Intermediate mass black holes (IMBH)
New class of recently discovered BHs, ~ 10 — 10° M,

@ supermassive black holes (SMBH)
BHs at the center of galaxies, ~ 10° — 10° Mg,

Black hole growth chart

Black holes, including the newly discovered middleweights (color), have
masses that correlate with the size of their host galaxy.
Chilingarian et al., 1805.01467
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n of primordial black holes

nma ray constraints

Multiple inflationary origins
@ collapse of large primordial overdensities
@ phase transitions

@ collapse of cosmic strings, domain walls

Mass predictions

| N

Assuming that one PBH can be formed in a Hubble volume in the early Universe, one gets

Mppu ~ Mpianck X

~10% g x to(s)

Planck

where tg is the creation time.

We get:
@ M~ 1072 g for to ~107** s — Planck black holes

o M~ 10" g for to ~ 10723 s — lightest black holes still (possibly) existing
o M~ 10° My, for to ~1 s — IMHB? seeds for SMBH?

5\
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Angular momentum of primordial Black Holes

Angular momentum given by dimensionless parameter a* = J/M?
a* €10,1]

a* = 0 for Schwarzschild BHs, a* = 1 for extremal Kerr BHs

Standard inflationary model
—> low spin

Transient matter domination
= high spin

T J’
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The Cosmic Uroboros

A cosmic vision of PBHs by B. Carr (from arXiv:1703.08655)
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Solving the cusp-core problem with PBHs

0.0 Gyr

p Mg kpe™
y [pc]

In presence of heavy PBHSs, possible transition from
cusp to core

3.0 Gyr

On the right: N-body simulation of dwarf galaxy
with 10” My halo made of 50% of dark matter in =
the form of 100 M; PBHs and 50% of 1 My DM O 6 0Gyr
particles. From Boldrini et al. [1909.07395]. ’

M kpe™?]
y [pe]

VI an. s

Gravitational heating by heavy PBHs:

p M.
y [pc]

@ Dynamical friction of DM particles on PBHs

11 Gyr

o Two body relaxation between PBHs

-100

p Mg kpe™?
y [pe]

2.0
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r [kpc] z [pc]
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Primordial Black Holes

Plausible Dark Matter candidates
@ no need for Standard Model or General Relativity extension
o dynamically cold
@ no need to prove BH existence (maybe...)

@ constrained, but mass ranges still available for BHs to represent all of dark matter

Many constraints, but many are not robust!

Ketov and Khlopov, Symmetry 11 (2019)
] 10~15 1010 105 1 105 1010

0.100
E
0.010
£ o001}
=
1074 |
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I These constraints should be reconsidered I
-6 1 1
10
10719 10710 1078 1 108 1010
MIMe
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nma ray constraints

@ no need for Standard Model or General Relativity extension

o dynamically cold
@ no need to prove BH existence (maybe...)

constrained, but mass ranges still available for BHs to represent all of dark matter

More realistically: constraints from radiation, lensing and dynamics observations

10(]
WD
MAGHO/EROS/OGLE
Z10°!
U
= Subaru HSC
<
[
« 1072 =
=
o adapted from Katz et al. [arXiv:1807.11495]
107 1018 1020 1022 1024 106 1028 1030 1032 1034 103

M (g)
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Quantum Mechanics Thermodynamics

i

Quantum Black
Holes

General Relativity
from B. Carr

... because they emit Hawking radiation!

Alexandre Arbey JOGLy 2 — Lyon — October 17th, 2019 18 / 36



ack holes Hawking radiation nma ray constraints
0@00000000

Different scales,

What Hawking radiation tells us...

@ M~ 10"° g — Planck mass BHs — probes of quantum gravity

o M ~ 10 g — PBHs emitting a lot of particles today — cosmic rays,
gamma rays, ...

e M > 10" g — PBHs with low Hawking emission — BHs as dark matter

e M < 10'® g — PBHs which evaporated (and disappeared?) long ago
— probes of inhomogeneities, phase transitions, ...

More details in the next slides...
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Hawking radiation
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=5 —
l source: actusf.com

Fundamental equation for Kerr BHs

Rate of emission of Standard Model particles i at energy E by a BH of mass M and spin
parameter a*:

Qi

o dzN[ o iz r,‘(M, E,a*)
T dtdE T 27w L eF/T(Ma") 111

I'; is the greybody factor (~ absorption coefficient in Planck’s black-body law)

Alexandre Arbey JOGLy 2 — Lyon — October 17th, 2019 20 / 36



ntroductior rimor k holes Hawking radiation constraint
000@000000

Hawking temperature

Hawking temperature for Kerr BHs

1-— *)? chwarzschil
T(M, 2") = 1 (a*) Schwarzschild 1

" 4nM 1+/1—(a%)? a*=0  8mM

Comparison with the e® rest mass and QCD scale Aqcp
10!

— a*=0
— a*=09
—  a*=10.9999

100

10-11 Aaen

107 1o 107 1010
M (g)

Alexandre Arbey JOGLy 2 — Lyon — October 17th, 2019 21/ 36



Hawking radiation
0000@00000

Kerr Hawking radiation equations

Kerr metric
2Mr 2 42" M?rsin® 0
ds* (1 - T) A+ =5 —

*\2 £ 13 8-
— $2d6% — (r2 +(a")2m2 4 2E)S Morsin” ’;’2’5'" 0) sin® 0dg?

dtdg — %dr

L =r"+(a")’M?cos’ 0 and A = r* — 2Mr + (a*)*M?

Equations of motion in free space

| A

Dirac: (i) — pu)y» = 0 (fermions)

Proca: (O + p*)¢ = 0 (bosons)
[ = rest mass

A
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Kerr Hawking radiation equations

Teukolsky radial equation

1d dR K2 + 2is(r — M)K
-4 (ASH—) 4 (% — 4isEr — A —,frz)R=o

As dr dr

R radial component of ¥/¢
K = (r* + a®)E + am, s = spin, | = angular momentum and m = projection

Transformation into a Schrodinger equation

Change ¢¥/¢ —> Z and r — r* (generalized Eddington-Finkelstein coordinate system)
(Chandrasekhar & Detweiler 1970s)

d*z
dr*2

+(E? = V(r)Z=0 (1)

- . - — £
Solved with purely outgoing solution Z — e TEr
r*——oo
horizon |2
Zout |

Transmission coefficient I = | Z 3/
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Advertisement: BlackHawk

First public C code computing Hawking radiation:
@ Schwarzschild & Kerr PBHs
@ primary spectra of all Standard Model fundamental particles
secondary spectra of stable particles (hadronization with PYTHIA or HERWIG)

@ extended mass functions

@ time evolution of the PBHs
Download: http://blackhawk.hepforge.org
Manual: arXiv:1905.04268, Eur.Phys.J. C79 (2019) 693

+ Home BlackHawk

» Description

= Dz By Alexandre Arbey and Jérémy Auffinger

« Download

o @it Calculation of the Hawking evaporation spectra of any black hole distribution

BlackHawk is a public C program for calculating the Hawking evaperation spectra of any black hole distribution
This program enables the users to compute the primary and secondary spectra of stable or long-lived particles
generated by Hawking radiation of the distribution of black holes, and to study their evolution in time

If you use BlackHawk to publish a paper, please cite:
A Arbey and J. Auffinger, arXiv:1905.04268 [gr-qc]

For any comment, question or bug report please contact us
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Enhanced emission for rotating BHs

BH-particle spin coupling = superradiance effects (see e.g. Chandrasekhar & Detweiler
papers in the 1970s)
The Hawking radiation is enhanced for particles of spin 1 or 2.

Example of spin 1 massless emissivity (photon)
Dotted lines = Hawking temperature

— a*=0 — a* =10.9999

— a*=09

10~ 10~ 107T 107 10'
z = 2EM (dimensionless)

Alexandre Arbey JOGLy 2 — Lyon — October 17th, 2019 25 / 36



troduction k holes Hawking radiation G: constraints
000000000

Black hole lifetime

Evolution equations

M f(M,a")

f~ / ener. X emiss.
E

dt M?
Ciiit =2 (2f(M,aA)A; g(M,27)) g~ /Eang. mom. X emiss.

BH mass (solid) and spin (dotted) evolution
10 .

Arbey et al. [arXiv:1906.04196]

0.8l

0.6

M/M;

0.4

0.2
a;

K 02" 0406 0% —70
t/Tsewarzsaiid (7 = lifetime)
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Extremal spin today?

Could high spin BHs exist today? Can we get over Thorne's limit on the spin of rotating
BHs from disk accretion (a* < 0.998) 7
— Yes, with sufficiently massive and extremal PBHs

PBH final spin as a function of its initial mass

100
4 =099
— af=0999
1071 — af=0.9999
1072
|
T Thorne = 0.998 ___
1073
4
10 1015 101(7 101" 1018
M; (g) Arbey et al. [arXiv:1906.04196]
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Isotropic gamma ray background (IGRB) constraints

10°,

HEAOL1 + balloon
o = = COMPTEL
Diffuse background + R B pone!
1073 b
o Active galactic nuclei b o
T; 1079
o Gamma ray bursts Jj: L
e DM annihilation/decay? Sy
= 1078 .,
o Hawking radiation? N
|(r‘“ Arbey et al. [arXiv:1906.04750] 1

S S S e (VL (Vi (1
E (MeV)

Flux estimation for BHs

/ 1 £ ttoday 1
~ [T a)

CMB

></ {;A’;,;td’\é(m (1+ z(t))E)dM| dt
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IGRB and Kerr PBHs: monochromatic mass distributions

Main spin effects

@ enhanced luminosity = stronger constraints

@ reduced temperature = reduced emission energy = weaker constraints

Monochromatic constraints from the IGRB

,_.
<

H
9
&

pPBH/PD\I
=
<
kS

l 10-¢ —  Canr et al. 2010
Lloafp=0
a; =09
10°¢ = gf =0.9999
107 0+ 10" 10% 107 10"

M (g)  Arbey etal. [arXiv:1906.04750]
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IGRB and Kerr PBHs: Extension to broad mass functions

Main width effects

@ broadening of the spectrum = stronger constraint

@ broadening of the mass distribution = greater DM total density = weaker constraint

Carr et al. 2010

- ar=0

ppBi/PDM
=
I

/
g

i =0.9999 a; = 0.9999

1071 — 4

Dirac

ppBi/POM
=
I

S a=0
af =09

— a; =0.9999

S a4 =0
a; =09
a; = 0.9999

f

11
07 = [o=1 ]
107 0 07 101 1077 107 107 01 107 101 107 107
M, (g) Arbey et al. [arXiv:1906.04750] M, (g)
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Gamma ray constraints
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10°
107!
1072
= 1073
£
<
=
z10° — FERMI — Dirac
h — FERMI —¢ =01
10" — FERMI — 0 =05
Bulge ¢™ — Dirac
10-6 Bulgeet — o = 0.1
Bulgee™ — o = 0.5
er 1 e — Dirac
10-7 Arbey et al. [arXiv:1906.04750] (FERMI) \'u, ger 1 F‘ Dirac
DeRocco & Graham [arXiv:1906.07740], Laha [arXiv:1906.09994] (Bulge e+) Voyagerle' —o =0.1
Boudaud & Cirelli [arXiv:1807.03075] (Voyager 1 e+) Voyager et — o = 0.5
1081 i <
1013 101() 1011 1018

M (g)
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Ongoing work: Gravitational waves from Hawking raditi

PBHs emits gravitons, which can be interpreted as gravitational waves.
Will the future GW experiments be able to see them?

Preliminary — J. Auffinger

Graviton stacked spectra (Negoias = 60, fotart = 1078, Lo = 107"s)

BBO N
10791| === cLISALAAIMON1 X
CLISA LGASMBN2
LIGO O1

10-21

€LIGO/adVIRGO O5
~ —33
% 1077 —
= || — M=3000x107g
~ M =2.564 x 107 g
105

M=2192x 107" g
Ho— M=1871x10lg
10757L — M =1601x10%g
M =1.360 x 107g
M =1170 x 107g
— M =1000x10°g

07 1077 107 1078 107 10™ 10%
f (Hz)

10799}

Discovering gravitational waves emitted via Hawking radiation would validate
the existence of the graviton!
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Ongoing work: Primordial black holes: possibility of merger (1)

Is lifetime of PBHs smaller than merger duration?

Preliminary — J.-F. Coupechoux

Schwarzschild radius Rs (m)
l5e-34 l6e-17 3.3e-17 4.9e-17 6.6e-17 8.2e-17

9.9e-17 1l2e-16 1l3e-16 1l5e-16
1016 L L L L L
—— evaporation timea” =0 B
10% 4 . . g
—— evaporation timea® =099 | .-~ >
w02 { ---- mergertime D=10Rs | .-
; merger time D = 10°Rs b=
1075 e
w [ ---- merger time D = 10°Rs Pt -1
g 1077 . merger time D = 10°Rs T
= e
10718 - ==t —~
wEL e =T S
10733_ ______________
10°* 1072 10° 10? 104 108 108 10 10%2 10%
Mass M (q)

Plain lines: PBH evaporation time (=lifetime)

Dashed lines: merger time for two PBHs of same mass, for different initial distances D
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Ongoing work: Primordial black holes: possibility of merger (2)

Is expansion too fast to allow for a merger?

Preliminary — J.-F. Coupechoux

43 |
0 p=10Rs

10%7 4 D=10°Rs
—— D=10°Rs
—— D=10%s
10 1- ———. Max PBH mass

103!

101°

1013

107 4

101 4

Mass of merging black holes (g) for
merger time equal Hubble time

1073 10-2° 10722 10715 10°8 10-t 108 1013
Age of the univers (s)

For a given distance D, two BHs with masses above the lines merge faster than they
move away because of expansion.
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PBH-related projects

Big Bang Nucleosynthesis (see e.g. Sedel’nikov 1996, Kohri 2000)

galactic gamma & X-rays (see e.g. Ballestros et al. [arXiv:1906.10113])

galactic positrons (see e.g. Boudaud & Cirelli [arXiv:1807.03075], DeRocco &
Graham [arXiv:1906.07740], Laha [arXiv:1906.09994])

merger of PBHs and cosmological consequences (see e.g. Garriga & Triantafyllou
[1907.01455])

o stability of extremal BHs

° ...

Dwarf spheroidal (dSph) gamma ray constraints from FERMI-LAT

“
FERMI — a" =0
1010 — FERMI — a* =09
FERMI — a* = 0.9999
10-13 -+ FERMI (IGRB)
Voyager 1
107 0™ 101 101 107 10'%

M (g)
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Take-home messages
o Primordial black holes are good candidates for DM
@ A broad range of masses is possible
o Light PBHs are quantum objects
@ PBHs of ~ 10'®g may still be present and emit a lot of Hawking radiation

Perspectives
o Closing the remaining PBH mass windows for all DM into PBHs?
o Primordial BH / Astrophysical BH discrimination using GW events?

o Graviton/gravitational wave duality tests?
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Kerr Hawking radiation equations

drasekhar potentials
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Luminosities for all spins
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Evolution parameters

Page parameters (Page 1976)
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Reduced lifetime

Decrease of BH lifetime 7 for increasing initial spin a;, compared to the Schwarzschild

1.0

— M= 101(lg
— M=10%g

0.9

0.8

0.7

/70

0.6

0.5

0.4

01%—4 1073 102 1071 10°
case (7o) 1—a; Arbey et al. [arXiv:1906.04196]

Alexandre Arbey JOGLy 2 — Lyon — October 17th, 2019 a1 / 36



0O0000e

Log-normal distributions

Definition

dn A (log(M/M.,))?
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M* = central mass, o = width (dimensionless)

Log-normal distributions (normalized to unity, M* = 3 x 10'° g)
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