Primordial Black Holes

Alexandre Arbey

IP2I & UCBL


Many thanks to J. Auffinger, J.-F. Coupechoux and J. Silk!

JOGLy 2

Lyon - October 17th, 2019

 \gg

$ho_{ m deduced} \propto r^-$


$$ho_{\mathsf{stars}} \propto \mathsf{e}^{-r/r_{\mathbf{0}}}$$

Well known baryonic contribution Dark matter dominates those objects

Introduction 000000000	Primordial black holes 0000000	Hawking radiation	Gamma ray constraints 0000	Perspectives
Dark Matter in	Cluster			

• X-ray Observations \rightarrow presence of hot gas (P, ρ, T)

• Weak lensing

Confirms the X-ray results!

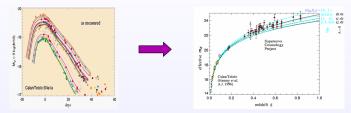
Introduction 000000000	Primordial black holes 0000000	Hawking radiation	Gamma ray constraints 0000	Perspectives
Bullet Cluster				

Dark Matter is independent from baryonic matter!

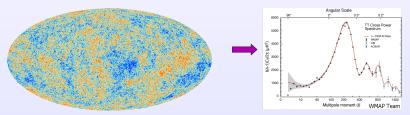
Introduction	Primordial black holes	Hawking radiation	Gamma ray constraints	Perspectives
0000000000	0000000	0000000000	0000	00000
Cosmological	Standard Model			

Friedmann-Lemaître Universe

• Homogeneous and Isotropic Universe

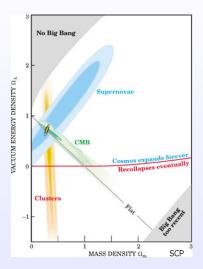

• Robertson-Walker metric:
$$d\tau^2 = dt^2 - a(t)^2 \left\{ \frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2 \right\}$$

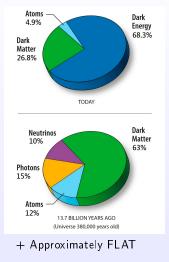
• Adiabatic cosmic fluids: matter, radiation, dark energy, ... (
ho,P)


• Einstein-Friedmann equations:
$$\begin{cases} H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} \\ \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) \end{cases}$$

Today (H₀ Hubble-Lemaître constant): $H_0^2 = \frac{8\pi G}{3}\rho^0 - \frac{k}{a_0^2} \equiv \frac{8\pi G}{3}\rho_C^0 \leftarrow \text{critical density} \end{cases}$
Cosmological parameters (for each component): $\Omega_{comp} = \frac{\rho_{comp}^0}{\rho_C^0}$

Introduction	Primordial black holes	Hawking radiation	Gamma ray constraints	Perspectives
0000000000	0000000		0000	00000
Cosmological O	bservations			


Supernovæ of Type la



Cosmic Microwave Background

Introduction	Primordial black holes	Hawking radiation	Gamma ray constraints	Perspectives
00000000000	0000000	0000000000	0000	00000
Dark Matter Ca	andidates			

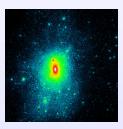
Massive neutrinos

Weakly Interacting Massive Particles (WIMPs) In particular, many particle physics models provide WIMP candidates!

• Other particles/fields: axions, dark fluids, ... Exotic and non-baryonic particles

Black Holes

Not possible with stellar and supermassive black holes

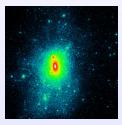

Modified Gravitation Laws

MOND, TeVeS, Scalar-tensor theories, ...

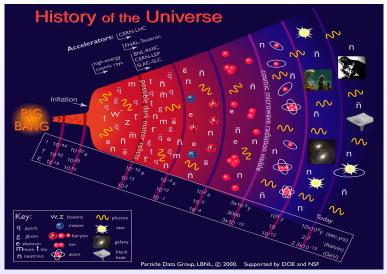
Introduction 00000000000	Primordial black holes 0000000	Hawking radiation	Gamma ray constraints 0000	Perspectives
Cold dark mat	ter: WIMPs			

Weakly Interacting Massive Particles

- Good cosmological behaviour and good galaxy formation
- Rotation curves at large radius for large galaxy OK
- Clusters OK
- No direct detection yet
- Clumpiness problems? (clumps formation, cuspy center, ...)


Introduction	Primordial black holes	Hawking radiation	Gamma ray constraints	Perspectives
0000000●00	0000000	0000000000	0000	
Cold dark matt	er: WIMPs			

Weakly Interacting Massive Particles


- Good cosmological behaviour and good galaxy formation
- Rotation curves at large radius for large galaxy OK
- Clusters OK
- No direct detection yet
- Clumpiness problems? (clumps formation, cuspy center, ...)

Beyond the Standard Model

- No SM particle can constitute DM
- Many BSM theories predict the existence of WIMPs
- No new particle discovered yet...

ntroduction	Primordial black holes 0000000	Hawking radiation 0000000000	Gamma ray constraints ୦୦୦୦	Perspectiv
listory of the U	niverse			

Recombination (and emission of cosmic microwave backgroud) constitutes a limit between the dark times and the observable Universe

Alexandre Arbey

Int

ves

- How to describe the beginning of the Universe (\sim Planck energy)? Quantum gravity? Brane theories? Other gravitation theories?
- What did drive inflation in the early Universe? When did it end?
- Do/did topological defects (magnetic monopoles, domain walls, ...) exist?
- What did happen during leptogenesis?
- What did happen during baryogenesis?
- Where does the particle-antiparticle asymmetry come from?
- Did the relic dark matter particle freeze-out happen, how and when?
- Do we fully understand the properties of the QCD-dominated plasma?
- Do we fully understand **Big-Bang nucleosynthesis**?

What about (Primordial) Black Holes??

Introduction 0000000000	Primordial black holes ●೦೦೦೦೦೦	Hawking radiation	Gamma ray constraints 0000	Perspectives
Black holes				

In the following we place ourselves in the natural unit system with $c = \hbar = k_B$ (= G) = 1.

Schwarzschild metric for a static compact object of mass M

$$d\tau^{2} = \left(1 - \frac{2GM}{r}\right)dt^{2} - \frac{dr^{2}}{1 - \frac{2GM}{r}} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

One defines the Schwarzschild radius: $R_s = 2GM$. If the mass M is completely within $r < R_s$, the radius $r = R_s$ consistutes a horizon.

 \longrightarrow Black Hole!

Kerr metric for a static compact object of mass M and angular momentum J

$$d\tau^{2} = \left(dt - a\sin^{2}\theta d\phi\right)^{2} \frac{\Delta}{\Sigma} - \left(\frac{dr^{2}}{\Delta} + d\theta^{2}\right)\Sigma$$
$$-\left(\left(r^{2} + a^{2}\right)d\phi - adt\right)^{2}\frac{\sin^{2}\theta}{\Sigma}$$

 $a = J/M, \ \Sigma = r^2 + a^2 \cos^2 \theta, \ \Delta = r^2 - R_s r + a^2, \ R_s = 2GM$

The horizon exists but is deformed and flattened \rightarrow Kerr (Rotating) Black Hole

Alexandre Arbey

Introduction 0000000000	Primordial black holes ●೦೦೦೦೦೦	Hawking radiation	Gamma ray constraints 0000	Perspectives
Black holes				

In the following we place ourselves in the natural unit system with $c = \hbar = k_B$ (= G) = 1.

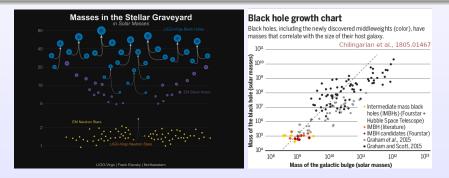
Schwarzschild metric for a static compact object of mass M

$$d\tau^{2} = \left(1 - \frac{2GM}{r}\right)dt^{2} - \frac{dr^{2}}{1 - \frac{2GM}{r}} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

One defines the Schwarzschild radius: $R_s = 2GM$. If the mass M is completely within $r < R_s$, the radius $r = R_s$ consistutes a horizon.

 $\longrightarrow \mathsf{B}\mathsf{lack}\;\mathsf{Hole!}$

Kerr metric for a static compact object of mass M and angular momentum J


$$d\tau^{2} = \left(dt - a\sin^{2}\theta d\phi\right)^{2}\frac{\Delta}{\Sigma} - \left(\frac{dr^{2}}{\Delta} + d\theta^{2}\right)\Sigma$$
$$-\left(\left(r^{2} + a^{2}\right)d\phi - adt\right)^{2}\frac{\sin^{2}\theta}{\Sigma}$$

 $a=J/M,\ \Sigma=r^2+a^2\cos^2 heta,\ \Delta=r^2-R_sr+a^2,\ R_s=2GM$

The horizon exists but is deformed and flattened \rightarrow Kerr (Rotating) Black Hole!

Introduction 0000000000	Primordial black holes O●OOOOO	Hawking radiation	Gamma ray constraints 0000	Perspectives
Observed black	holes			
Three types of	black holes have bee	n discovered		

- \circ Stellar black holes BHs originated in the explosion of massive stars/supernovae, $\sim 3-100\,M_{\odot}$
- Intermediate mass black holes (IMBH) New class of recently discovered BHs, $\sim 10^3 - 10^6 M_{\odot}$
- supermassive black holes (SMBH) BHs at the center of galaxies, $\sim 10^6 - 10^9 M_{\odot}$

Introduction	Primordial black holes	Hawking radiation	Gamma ray constraints	Perspectives
0000000000	00●0000	0000000000	0000	00000
Origin of prime	ordial black holes			

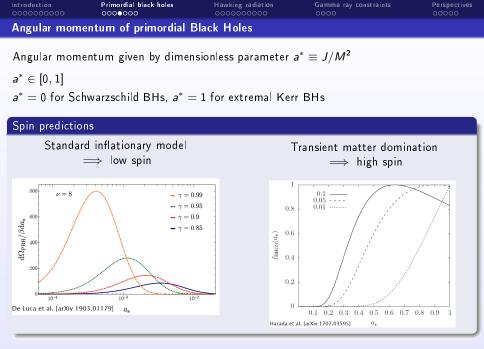
Multiple inflationary origins

- collapse of large primordial overdensities
- phase transitions
- collapse of cosmic strings, domain walls

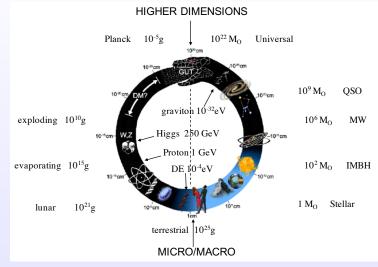
Mass predictions

Assuming that one PBH can be formed in a Hubble volume in the early Universe, one gets

$$M_{
m PBH} \sim M_{
m Planck} imes rac{t_0}{t_{
m Planck}} \sim 10^{38}~{
m g}~ imes t_0({
m s})$$


where t_0 is the creation time.

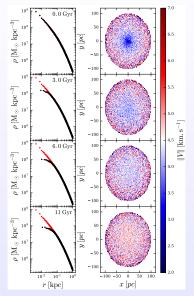
We get:


•
$$M \sim 10^{-5}$$
 g for $t_0 \sim 10^{-43}$ s $ightarrow$ Planck black holes

• $M \sim 10^{15}$ g for $t_0 \sim 10^{-23}$ s ightarrow lightest black holes still (possibly) existing

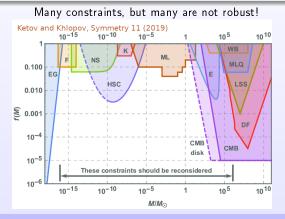
• $M \sim 10^5 M_{\odot}$ for $t_0 \sim 1 \text{ s} \rightarrow \text{IMHB}$? seeds for SMBH?

Introduction	Primordial black holes	Hawking radiation	Gamma ray constraints	Perspectives
	0000000			
6 I I I II	1.1	DDU		


Solving the cusp-core problem with PBHs

In presence of heavy PBHs, possible transition from cusp to core

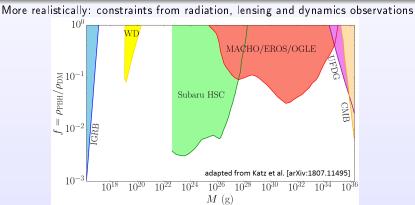
On the right: N-body simulation of dwarf galaxy with $10^7 M_{\odot}$ halo made of 50% of dark matter in the form of 100 M_{\odot} PBHs and 50% of 1 M_{\odot} DM particles. From Boldrini et al. [1909.07395].


Gravitational heating by heavy PBHs:

- Dynamical friction of DM particles on PBHs
- Two body relaxation between PBHs

Introduction 0000000000	Primordial black holes 000000●	Hawking radiation	Gamma ray constraints 0000	Perspectives	
Primordial Bla	ack Holes				
Plausible Darl	Matter candidates				
 no need f 	 no need for Standard Model or General Relativity extension 				
• dynamically cold					
 no need t 	o prove BH existence	(maybe)			

• constrained, but mass ranges still available for BHs to represent all of dark matter



Alexandre Arbey

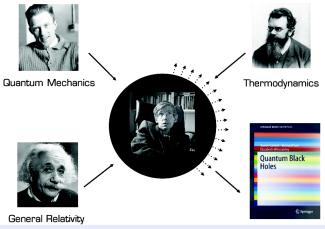
JOGLy 2 - Lyon - October 17th, 2019

Introduction 0000000000	Primordial black holes 000000●	Hawking radiation	Gamma ray constraints 0000	Perspectives	
Primordial BI	ack Holes				
Plausible Dark Matter candidates					
 no need for Standard Model or General Relativity extension 					

- dynamically cold
- no need to prove BH existence (maybe...)
- constrained, but mass ranges still available for BHs to represent all of dark matter

Introduction

Primordial black holes


Hawking radiation

Gamma ray constraints

Perspectives

Why are PBHs so special?

Light PBHs cannot be described only with General Relativity...

from B. Carr

... because they emit Hawking radiation!

Introduction	Primordial black holes	Hawking radiation	Gamma ray constraints	Perspectives
0000000000	0000000	O●OOOOOOOO	0000	00000
Different scales	, different times			

What Hawking radiation tells us...

- $M \sim 10^{-5}~{
 m g}
 ightarrow {
 m Planck}$ mass BHs ightarrow probes of quantum gravity
- $M \sim 10^{15} \text{ g} \rightarrow \text{PBHs}$ emitting a lot of particles today \rightarrow cosmic rays, gamma rays, ...
- $M \gg 10^{15}~{
 m g}
 ightarrow {
 m PBHs}$ with low Hawking emission $ightarrow {
 m BHs}$ as dark matter
- $M \ll 10^{15} \text{ g} \rightarrow \text{PBHs}$ which evaporated (and disappeared?) long ago \rightarrow probes of inhomogeneities, phase transitions, ...

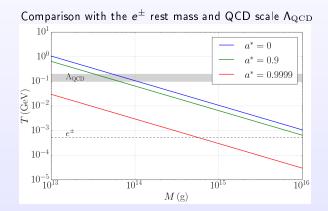
More details in the next slides...

Introduction 0000000000	Primordial black holes 0000000	Hawking radiation ○○●○○○○○○○	Gamma ray constraints 0000	Perspectives 00000
Black hole Ha	awking radiation			
		norizon		
		horizon	•	

Fundamental equation for Kerr BHs

Rate of emission of Standard Model particles i at energy E by a BH of mass M and spin parameter a^* :

source: actusf.com


$$Q_i = \frac{\mathrm{d}^2 N_i}{\mathrm{d}t \mathrm{d}E} = \frac{1}{2\pi} \sum_{\mathrm{dof.}} \frac{\Gamma_i(M, E, a^*)}{e^{E'/T(M, a^*)} \pm 1}$$

 Γ_i is the greybody factor (\sim absorption coefficient in Planck's black-body law)

Introduction	Primordial black holes	Hawking radiation	Gamma ray constraints	Perspectives
0000000000		000●000000	0000	00000
Hawking temp	erature			

Hawking temperature for Kerr BHs

$$T(M, \boldsymbol{a}^*) = \frac{1}{4\pi M} \left(\frac{\sqrt{1 - (\boldsymbol{a}^*)^2}}{1 + \sqrt{1 - (\boldsymbol{a}^*)^2}} \right) \stackrel{Schwarzschild}{\longrightarrow} \frac{1}{8\pi M}$$

Introduction	Primordial black holes	Hawking radiation	Gamma ray constraints	Perspectives
0000000000	0000000	0000●00000	୦୦୦୦	
Kerr Hawking	radiation equations			

Kerr metric

$$ds^{2} = \left(1 - \frac{2Mr}{\Sigma^{2}}\right)dt^{2} + \frac{4a^{*}M^{2}r\sin^{2}\theta}{\Sigma^{2}}dt\,d\phi - \frac{\Sigma^{2}}{\Delta}dr^{2}$$
$$-\Sigma^{2}d\theta^{2} - \left(r^{2} + (a^{*})^{2}M^{2} + \frac{2(a^{*})^{2}M^{3}r\sin^{2}\theta}{\Sigma^{2}}\right)\sin^{2}\theta d\phi^{2}$$

$$\Sigma \equiv r^2 + (a^*)^2 M^2 \cos^2 heta$$
 and $\Delta \equiv r^2 - 2 M r + (a^*)^2 M^2$

Equations of motion in free space

Dirac:
$$(i\partial - \mu)\psi = 0$$
 (fermions)
Proca: $(\Box + \mu^2)\phi = 0$ (bosons)

 $\mu = \text{rest mass}$

Introduction	Primordial black holes	Hawking radiation	Gamma ray constraints	Perspectives
0000000000	0000000	00000●0000	0000	
Kerr Hawking	radiation equations			

Teukolsky radial equation

$$\frac{1}{\Delta^{s}}\frac{\mathrm{d}}{\mathrm{d}r}\left(\Delta^{s+1}\frac{\mathrm{d}R}{\mathrm{d}r}\right) + \left(\frac{\mathcal{K}^{2}+2i\,s(r-M)\mathcal{K}}{\Delta} - 4i\,s\text{E}r - \lambda_{slm} - \mu^{2}r^{2}\right)R = 0$$

R radial component of ψ/ϕ $K\equiv (r^2+a^2)E+a\,m,\,s=$ spin, l= angular momentum and m= projection

Transformation into a Schrödinger equation

Change $\psi/\phi \longrightarrow Z$ and $r \longrightarrow r^*$ (generalized Eddington-Finkelstein coordinate system) (Chandrasekhar & Detweiler 1970s)

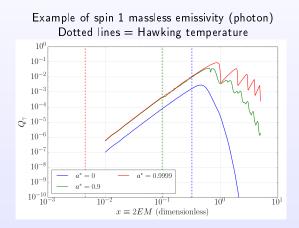
$$\frac{\mathrm{d}^2 Z}{\mathrm{d}r^{*2}} + (E^2 - V(r^*))Z = 0 \tag{1}$$

Solved with purely outgoing solution $Z \xrightarrow[r^* \to -\infty]{} e^{-i Er^*}$ Transmission coefficient $\Gamma \equiv |Z_{out}^{+\infty}/Z_{out}^{horizon}|^2$

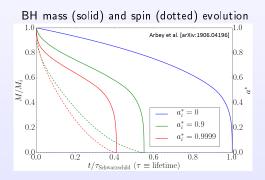
Introduction 0000000000	Primordial black holes 0000000	Hawking radiation 000000●000	Gamma ray constraints 0000	Perspectives
Advertisement	BlackHawk			

First public C code computing Hawking radiation:

- Schwarzschild & Kerr PBHs
- primary spectra of all Standard Model fundamental particles
- secondary spectra of stable particles (hadronization with PYTHIA or HERWIG)
- extended mass functions
- time evolution of the PBHs

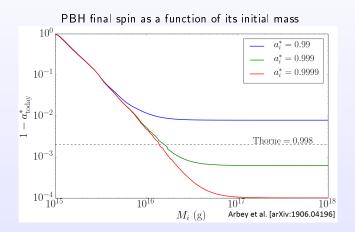

Download: http://blackhawk.hepforge.org

Manual: arXiv:1905.04268, Eur.Phys.J. C79 (2019) 693


BH-particle spin coupling \Rightarrow superradiance effects (see e.g. Chandrasekhar & Detweiler papers in the 1970s) The Hawking radiation is enhanced for particles of spin 1 or 2.

Introduction	Primordial black holes	Hawking radiation	Gamma ray constraints	Perspectives
0000000000	0000000	00000000●0	0000	
Black hole lifet	ime			

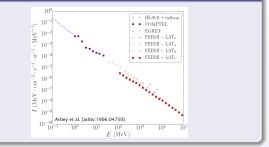
Evolution equations


$$\frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{f(M, a^*)}{M^2} \qquad \qquad f \sim \int_E \text{ ener. } \times \text{ emiss.}$$
$$\frac{\mathrm{d}a^*}{\mathrm{d}t} = \frac{a^*(2f(M, a^*) - g(M, a^*))}{M^3} \qquad \qquad g \sim \int_E \text{ ang. mom. } \times \text{ emiss.}$$

Introduction 0000000000	Primordial black holes 0000000	Hawking radiation 000000000●	Gamma ray constraints 0000	Perspectives
Extremal spin	today?			

Could high spin BHs exist today? Can we get over Thorne's limit on the spin of rotating BHs from disk accretion ($a^* < 0.998$) ?

→ Yes, with sufficiently massive and extremal PBHs

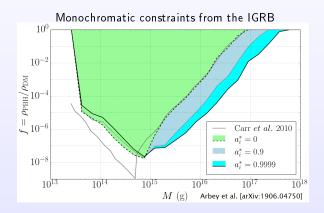


Introduction 0000000000	Primordial black holes 0000000	Hawking radiation	Gamma ray constraints ●೦೦೦	Perspectives
lsotropic gamr	na ray background (GRB) constraints		

Origin

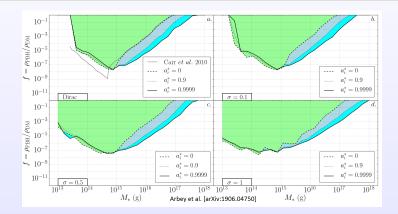
Diffuse background +

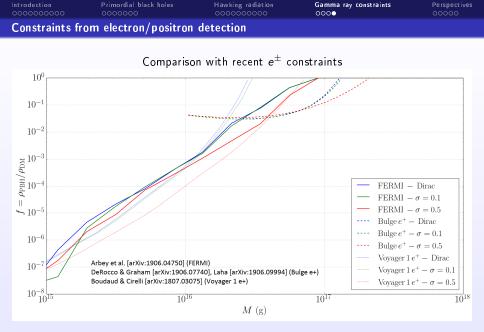
- Active galactic nuclei
- Gamma ray bursts
- DM annihilation/decay?
- Hawking radiation?


Flux estimation for BHs

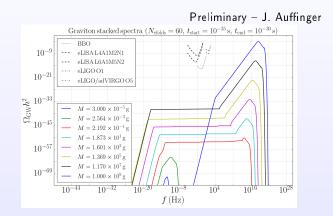
Arbey et al. [arXiv:1906.04750]

$$egin{split} I &\approx rac{1}{4\pi} E \int_{t_{
m CMB}}^{t_{
m today}} (1+z(t)) \ & imes \int_M \left[rac{{
m d}n}{{
m d}M} rac{{
m d}^2 N}{{
m d}t {
m d}E} (M,(1+z(t))E) \, {
m d}M
ight] {
m d}t \end{split}$$

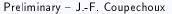

Introduction 0000000000	Primordial black holes 0000000	Hawking radiation	Gamma ray constraints O●OO	Perspectives 00000
IGRB and Kerr PBHs: monochromatic mass distributions				
Main spin effects				
 enhanced 	$ $ uminosity \Rightarrow stronge	er constraints		

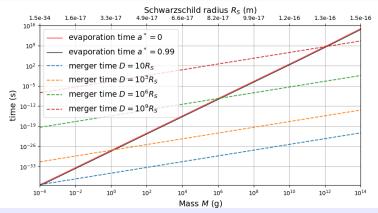

• reduced temperature \Rightarrow reduced emission energy \Rightarrow weaker constraints

Introduction 0000000000	Primordial black hole 0000000	s Hawking radiation 0000000000	Gamma ray constraints ୦୦●୦	Perspectives
IGRB and Ker	r PBHs: Extens	ion to broad mass funct	ions	
Main width ef	fects	$M \mathrm{d} n / \mathrm{d} M \propto \exp(-1)$	$n(M/M_*)^2/2\sigma^2)$	
$ullet$ broadening of the spectrum \Rightarrow stronger constraint				


• broadening of the mass distribution \Rightarrow greater DM total density \Rightarrow weaker constraint

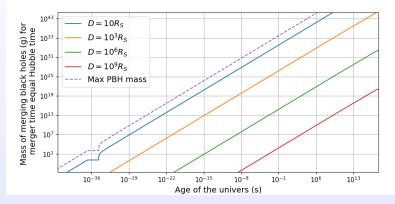
PBHs emits gravitons, which can be interpreted as gravitational waves. Will the future GW experiments be able to see them?


Discovering gravitational waves emitted via Hawking radiation would validate the existence of the graviton!


Alexandre Arbey

JOGLy 2 - Lyon - October 17th, 2019

Is lifetime of PBHs smaller than merger duration?

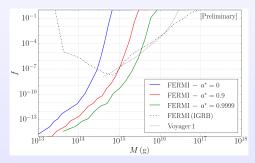

Plain lines: PBH evaporation time (=lifetime) Dashed lines: merger time for two PBHs of same mass, for different initial distances D

Alexandre Arbey

Is expansion too fast to allow for a merger?

Preliminary – J.-F. Coupechoux

For a given distance D, two BHs with masses above the lines merge faster than they move away because of expansion.


Alexandre Arbey

Introduction 0000000000	Primordial black holes 0000000	Hawking radiation 0000000000	Gamma ray constraints 0000	Perspectives 000●0
PBH-related	projects			
	g Nucleosynthesis (see	0		
 galactic g 	gamma & X-rays (see	e.g. Ballestros et a	<i>I.</i> [arXiv:1906.10113])	

- galactic positrons (see e.g. Boudaud & Cirelli [arXiv:1807.03075], DeRocco & Graham [arXiv:1906.07740], Laha [arXiv:1906.09994])
- merger of PBHs and cosmological consequences (see e.g. Garriga & Triantafyllou [1907.01455])
- stability of extremal BHs

• ...

Dwarf spheroidal (dSph) gamma ray constraints from FERMI-LAT

Introduction 0000000000	Primordial black holes 0000000	Hawking radiation	Gamma ray constraints 0000	Perspectives ○○○○●
Conclusions				
Take-home m	essages			
 Primordial black holes are good candidates for DM 				
A broad	range of masses is pos	ssible		
Light PB	Hs are quantum objec	cts		

 \circ PBHs of $\sim 10^{15}g$ may still be present and emit a lot of Hawking radiation

Perspectives

- Closing the remaining PBH mass windows for all DM into PBHs?
- Primordial BH / Astrophysical BH discrimination using GW events?
- Graviton/gravitational wave duality tests?

References

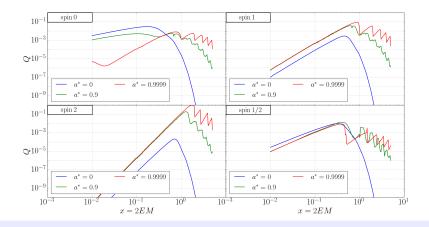
- BlackHawk: http://blackhawk.hepforge.org [A. Arbey, J. Auffinger, 1905.04268]
- Any extremal black holes are primordial [A. Arbey, J. Auffinger, J. Silk, 1906.04196]
- Constraining primordial black hole masses with the isotropic gamma ray background [A. Arbey, J. Auffinger, J. Silk, 1906.04750]
- Primordial black holes as dark matter: cusp-to-core transition in low-mass dwarf galaxies [P. Boldrini, Y. Miki, A. Wagner, R. Mohayaee, J. Silk, A. Arbey, 1909.07395]

Backup

Backup

Alexandre Arbey

Kerr Hawking radiation equations

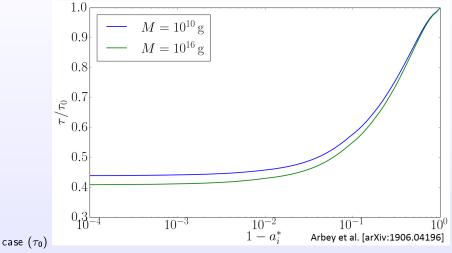

Chandrasekhar potentials

$$\begin{split} V_{\mathbf{0}}(r) &= \frac{\Delta}{\rho^4} \left(\lambda_{\mathbf{0} \ lm} + \frac{\Delta + 2r(r-M)}{\rho^2} - \frac{3r^2\Delta}{\rho^4} \right) \\ V_{\mathbf{1}/2,\pm}(r) &= (\lambda_{\mathbf{1}/2 \ lm} + 1) \frac{\Delta}{\rho^4} \mp \frac{\sqrt{(\lambda_{\mathbf{1}/2,l,m} + 1)\Delta}}{\rho^4} \left((r-M) - \frac{2r\Delta}{\rho^2} \right) \\ V_{\mathbf{1},\pm}(r) &= \frac{\Delta}{\rho^4} \left((\lambda_{\mathbf{1} \ lm} + 2) - \alpha^2 \frac{\Delta}{\rho^4} \mp i\alpha\rho^2 \frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{\Delta}{\rho^4} \right) \right) \\ V_{\mathbf{2}}(r) &= \frac{\Delta}{\rho^8} \left(q - \frac{\rho^2}{(q-\beta\Delta)^2} \left((q-\beta\Delta) \left(\rho^2 \Delta q^{\prime\prime} - 2\rho^2 q - 2r(q^\prime \Delta - q\Delta^\prime) \right) \right) \\ &+ \rho^2 (\kappa \rho^2 - q^\prime + \beta\Delta^\prime) (q^\prime \Delta - q\Delta^\prime) \right) \end{split}$$

 $\rho^{\rm 2} \equiv {\it r}^{\rm 2} + \alpha^{\rm 2} ~{\rm and}~ \alpha^{\rm 2} \equiv {\it a}^{\rm 2} + {\it am}/{\it E}$

$$\begin{aligned} q(r) &= \nu \rho^4 + 3\rho^2 (r^2 - a^2) - 3r^2 \Delta \\ q'(r) &= r \left((4\nu + 6)\rho^2 - 6(r^2 - 3Mr + 2a^2) \right) \\ q''(r) &= (4\nu + 6)\rho^2 + 8\nu r^2 - 6r^2 + 36Mr - 12a^2 \\ \beta_{\pm} &= \pm 3\alpha^2 \\ \kappa_{\pm} &= \pm \sqrt{36M^2 - 2\nu(\alpha^2(5\nu + 6) - 12a^2) + 2\beta\nu(\nu + 2)} \end{aligned}$$

Luminosities for all spins

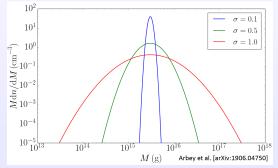

Page parameters (Page 1976)

$$f(M, a^*) \equiv -M^2 \frac{\mathrm{d}M}{\mathrm{d}t} = M^2 \int_0^{+\infty} \sum_{\mathrm{dof.}} \frac{E}{2\pi} \frac{\Gamma(E, M, a^*)}{e^{E'/T} \pm 1} \mathrm{d}E$$
$$g(M, a^*) \equiv -\frac{M}{a^*} \frac{\mathrm{d}J}{\mathrm{d}t} = \frac{M}{a^*} \int_0^{+\infty} \sum_{\mathrm{dof.}} \frac{m}{2\pi} \frac{\Gamma(E, M, a^*)}{e^{E'/T} \pm 1} \mathrm{d}E$$

Evolution equations (Page 1976)

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{f(M, a^*)}{M^2}$$
$$\frac{\mathrm{d}a^*}{\mathrm{d}t} = \frac{a^*(2f(M, a^*) - g(M, a^*))}{M^3}$$

Decrease of BH lifetime τ for increasing initial spin a_i^* , compared to the Schwarzschild


Log-normal distributions

Definition

$$\frac{\mathrm{d}n}{\mathrm{d}M} = \frac{A}{\sqrt{2\pi}\sigma M} \exp\left(-\frac{(\log(M/M_*))^2}{2\sigma^2}\right)$$

 $M^* = \text{central mass}, \sigma = \text{width (dimensionless)}$

Log-normal distributions (normalized to unity, $M^* = 3 \times 10^{15}$ g)

