Experimental Opportunities in Hadron Physics

Ulrich Wiedner

Ruhr-University Bochum (Germany)

The areas of hadron physics

How to study hadrons?

All hadrons except the proton are unstable and have to be produced

- Build them together in a controlled manner
 - ♦ e+e- collider can produce vector mesons (other particles in decays)
 - hadron beams have high production cross sections but little control (except for antiprotons)
- Observe them in a spectroscopic way
 - study their properties (mass, spin, lifetime, ...)
 - study their decay patterns
 - study their production modes
- Explore their structure and interactions

There are certain rules for building hadrons:

- Even though quarks and gluons carry color, hadrons are colorless
- The total angular momentum J = S(spin) + L(angular momentum)

• There are rules for parity and C parity

Striking evidence for quarks: The Charmonium Spectrum

A typical hadron physics experiment nowadays

BESIII has produced beautiful new results and delivers many important papers.

(336 in high-ranking refereed journals from 2010 – now)

One lesson from the past:

To determine nature of states: different production mechanisms and decay pattern necessary

⇒ combine results from as many as possible sources

BESIII data quality

$$\psi' {\longrightarrow} \, \gamma X$$

Hadronic Structure

The Nucleon (as composed by fundamental particles)

More than form factors and quark distributions ⇒ Generalized Parton Distributions (GPDs)

Elastic scattering reveals

form factors:

transverse charge and

current densities

Common description:

GPDs are *correlated* quark momentum and helicity distributions in *transverse* space (tomography)

Deep inelastic scattering:

Structure functions:

quark longitudinal
momentum & helicity
distributions

Extending longitudinal quark momentum & helicity distributions ⇒ transverse momentum distributions (TMDs).

Electromagnetic Processes:

crossed-channel Compton scattering

Handbag diagram separates a soft part described by GPDs from a hard $\overline{q}q$ annihilation process

Predicted rates*: several thousand / month or above

Exp. problem: Background channels like $\pi^0 \gamma$ or $\pi^0 \pi^0$ 5× - 100× stronger.

^{*}A. Freund, A. Radyushkin, A. Schäfer, and C. Weiss, Phys. Rev. Lett. 90, 092001 (2003).

From GPDs to TDAs

J.P. Lansberg, B. Pire, L. Szymanowski, Phys. Rev. D 76 (2007) 111502(R).

J.P. Lansberg, Workshop PANDA Orsay, France 2011

The π^0 could come from the p or the \bar{p}

Unique test of matter-antimatter symmetry only possible in PANDA

J.P. Lansberg, B. Pire, L. Szymanowski, Phys. Rev. D 76 (2007) 111502(R).

J.P. Lansberg, Workshop PANDA Orsay, France 2011

Spectroscopy in the Charmonium regime

Even more exotic: Z[±]

The first one: Z^+ (4430) $\rightarrow \pi^+ \psi'$

PRL 100, 142001 (2008) arXiv:0708.1790 [hep-ex]

~1 month data

~10 years data

 $e^+e^- \rightarrow \pi Z_c(4020) \rightarrow \pi^+\pi^-h_c$

Amplitude analysis (PWA): Breit-Wigner and K-Matrix formalism

Breit-Wigner fitting might not be sufficient:

$J/\psi \rightarrow \gamma \omega \omega$ PAWIAN K-Matrix (Malte Albrecht)

but still might give an equally good description:

... unfortunately unphysical:

The burning question: What is what?

Z_{CS} (3985) from e⁺e⁻ annihilations

$$e^+e^- \to K^+(D^-D^{*0} + D^{*-}D^0)$$

PRL 126, 102001 (2021)

$\psi_2(3823)$ decay modes

$$e^+e^-\to\pi^+\pi^-\psi_2(3823)$$

$$\psi_2(3823)\to\gamma\chi_{c0,1,2}\;,\,\pi\pi J/\psi\;,\,\eta J/\psi\;,\,\pi^0 J/\psi$$

PRD 103, L091102(2021)

Charmonium production in e⁺e⁻ at B-factories (BELLE)

Selection

Trigger on detached vertex and high-p_T hadrons and muons

- Good quality tracks
- μ , K, π , y identification (Muon, RICH, CALO)
- Vertex quality
- PV and SV separation

+ higher cross section for B production

- Daughter particles not from PV
- B-candidate from the PV
- Decay structure consistent
- Rectangular cuts or Boosted Decision Trees (BDT)

 missing kinematical constraints lead to reduced resolution

Efficiencies:

- Efficiencies from simulation
- when possible from data for PID, trigger

The advantage of antiproton annihilations:

- gluon-rich
- high-spin states possible without limitations on q.n.

Future

The PANDA detector

65,000 tons of steel: 9 Eiffel towers

2,000,000 m³ of earth excavated: 5,000 single-family homes

June 2019

Very complex buildings with several beam lines crossing

I hope I could show you that the investigation of hadrons can tell us a lot of fundamental results about nature.

Thank you!