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QUARKS...

= Building blocks of baryonic matter
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BODMER-WITTEN-TERAZAWA'’S STRANGE MATTER HYPOTHESIS

=  The strange matter hypothesis surmises that the true and absolute ground state of the trong interaction is a
deconfined state of quark matter, consisting of up, down and strange quarks (in aproximately the same proportion).

= The confined state of quarks that we know would be merely a very long-lived state, but not absolutely stable,

= There is no strong evidence either to support or oppose such hypothesis. There is, in fact, many works that show
that such hypothesis is perfectly compatible with our current understanding of the universe.

= |f the confined state of quarks is indeed a very long lived (but not absolutely stable) state, then only in very long
time scale (such that of stellar evolution) it would be possible for hadrons to transform in strange matter.

= Compact stars being the end result of a star’s life cycle would be ideal candidates to search for such matter.
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SIMPLE ENERGY CONSIDERATIONS FOR THE STRANGE MATTER
HYPOTHESIS

Considering a gas of two-flavor (u,d) quark matter

energy per baryon ~ 1100 MeV

For three-flavor quark-matter (u,d,s)

energy per baryon < 930 MeV

Recalling that for >6Fe

energy per baryon ~930 MeV

Whether or not strange quark matter is absolutely stable will depend on (currently not completely understood)
properties of the strong interaction (particularly QCD confinement and the strange quark mass).
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THE MIT BAG MODEL

= First description on a obscure french article by P. N. Bogoliubov: “Sur un modele a quarks quase-indépendants”
(1967)

= Later improved (without knowledge of Bogoliubov work) by five MIT scientists: Chodos, Jaffe, Johnson, Thorn and
Weisskopf (1974).

= The MIT version fixed the major problem of Bogoliubov’s description (energy-momentum conservation and causality).
= This was done by introducing a phenomenological “confining” pressure (BAG) to account for confinement.
= Evidently there are shortcomings in the MIT bag model, most prominent of which is violation of Chiral Symmetry

= First applications to compact stars by Farhi, Alcock e Olinto (1986)

14/05/2020



THE MIT BAG MODEL - FUNDAMENTALS

= Quarks are described by a fermi gas.

® up and down quarks are massless.

= Strange quark is massive.

= Confinement is included as a scalar field representing the “confining” pressure (the “BAG”)
= One can also include one gluon exchange (1st order) corrections

®  Pairing effects can also be included (although we do not consider them here)
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THE MIT BAG MODEL - FUNDAMENTALS

Thermodynamic Potentials Chemical equilibrium and charge neutrality
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THE MIT BAG MODEL - STABILITY ANALYSIS
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THE MIT BAG MODEL - QUARK COMPOSITION
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THE MIT BAG MODEL - ELECTRON COMPOSITION
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(local charge neutrality) (global charge neutrality)

Electron screening give rise to an
ultra high electric field. g
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THE EQUATION OF STATE
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MACROSCOPIC STRUCTURE

= Must resort to General Relativity

ds* = ') Edt? — M dr? — r?(d* + sin*0dd?) ——> [ Metric

T!' = (p + €)u'u, + pdl > | Energy-Momentum Tensor
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STELLAR SEQUENCE
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STRANGE PLANETS

Quark Core

=  Small density strange stars.

= Very small (macroscopic) quark core.

= Very extense nuclear crust
Nuclear Crust
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QUARK MATTER IS
SELF BOUND!

Neutron Stars are not giant
nuclei!

They are gravitationally bound!

Quark matter (under Witten’s
hypothesis) is absolutely stable.

Quark stars are then self-bound!

They can have very different
sizes.
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INTERMISSION: WHITE DWARF STRUCTURE

= Composed of lons immersed in a sea of degenerate electrons.

= |ons are organized in a crystalline structure.

= Electrons form a degenerate gas.

= Pressure comes mostly from electrons.

= Energy density comes from lons




INTERMISSION: WHITE DWARF STRUCTURE

= Given a nuclear species A

4
A= EHRJp,

= The electrons form a degenerate gas.
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STRANGELET CRYSTALS

= For lower densities it maybe more energetically favorable for quark matter to fragmente into smaller (strangelet)
pieces.

®  Such strangelets, much like in a White dwarf, will form a lattice as to minimize energy.

=  Whether or not such crystals can be formed will depend on the value of the quark matter surface energy.

= We assume that the surface energy is such that strangelet formation is allowed.
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STRANGELET
CRYSTALS

We consider a wide range of
strangelets.

We also investigate the effect of
different surface tensions.

We find that strangelets have a
Z/A ratio is smaller when
compared to ordinary nuclei

E (10° MeV)

Label A Z

c=02|0c=06|0c=1.0
Stra, | 5x 10° | 581 | 4.5189 | 4.5189 | 4.5201
Strag | 1 x 10* | 793 | 9.0258 | 9.0277 | 9.0297
Strag | 5 x 10* | 1527 | 45.055 | 45.060 | 45.066
Strag | 1 x 10° | 1986 | 90.073 | 90.082 | 90.091
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STRANGELET CRYSTAL - EOS
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STRANGELET CRYSTAL PLANET - SEQUENCE

= Planetary Properties can be obtained by solving the
structure equations.

=  We found objects with masses comparable to that
of observed planets.

=  The strangelet planets are much smaller however.

2

10 : : :
10° | -
A’ﬂ
€ 107} Stra, |
=
Stra2
Stra
107 3
Stra »
o -
10 : : :
10° 107 107 10’ 10

R [10° km]

14/05/2020



INTERMISSION II:
EXO-PLANETS

Extrasolar planets (planets outside of
the solar system)

Recent technological advances have
allowed to a rapid increase in the
observation of such objects (over
4000 as of now).

Observations indicate a wide range of
mass (from a few Luna masses to
over 30 Jupiters)
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TIDAL DISRUPTION
RADIUS

Orbit at which tidal forces would
lead to the destruction of the
orbiting object: TDE - Tidal
Distruction Even
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GRAVITATIONAL
WAVE AMPLITUDE

Due to the high compactness of
strangelet planets, their orbit
may give rise to possibily
detectable gravitational waves.
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STRANGELET
PLANETS
OBSERVABLES

For the strangelet Crystal planets
investigated we have found

Stra | M(My,) | R(km) | € (g/em®) | riq (cm) | P,y (ms)
1 23.3 96 | 2.5x10" | 3.8 x 107 107
2 9.2 53 | 5.9 x 10" | 2.8 x 107 69.9
3 7.2 8.0 | 1.3x10" | 4.7 x 10° 4.6
4 0.181 3.65 | 3.5x10" | 7.3 x 10° 9.0
Stra | M(M;) | R(km) | € (g/cm?®) h
1 23.3 96 | 2,51 x 10" | 3.08 x 10~
2 9.2 53 5.87 x 10'° | 1.61 x 102!
3 7.2 8.0 | 1.33x 10" | 7.68 x 10~
4 0.181 3.65 | 3.53 x 10" | 1.24 x 10~ **
Object Planets € Ttd Porp
(g/em®) (em) (s)
Ordinary Planets
Low density 10 5.1 x 10*° ~ 5263 4.9 x 107%°
High density 30 5.6 x 100 ~ 6100 7.1 %1072
Strangelet Crystal
Planets 10" =102 ~4x10°=3x 10" ~0.009—-0.107 ~ 10722 —10%
Strange Planets ~ 4.0 x 10" ~ 1.5 x 10° ~845x 107" ~107# -107%
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SUMMARY

= The hypothesis of absolutely strange matter is still an open question, thus any possible mechanism for detecting it should be
considered.

= Compact stars are prime subjects for such search. The presence of a nuclear crust, however, may mask the results.

= Technological advances have allowed us to increase the rate at which we can observe exoplanets.

= The wide range of properties exhibited by exoplanets make these objects good candidates for the search of quark matter.
= We have shown that strange crystal planets can orbit much closer to their host stars, as well as much faster.

= Furthermore future GW observatories, with higher sensibilities may allow us to search for GW signatures of such systems.
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