$C \underset{\text { Print }}{\operatorname{A}} \underset{\operatorname{Pr}}{ } E S$

Final State Interactions in 3-body decay: challenges and future

Patricia C. Magalhães

Instituto Tecnológico de Aeronáutica (ITA)
p.magalhaes@cern.ch

Collaborators:
I. Bediaga, A dos Reis, J. Miranda and D. Torres Machado (CBPF)
T. Frederico (ITA); M. Robilotta (USP);
J. Rademacker and K. Petridis (Bristol)

- Multi-body hadronic decays of B and D mesons
\longrightarrow are sensitive to strong phases
- signature of two-body resonances on data
- spectroscopy

\rightarrow light scalars in (200I/2002) $\sigma\left[f_{0}(500)\right]$ and $\kappa\left[K_{0}^{*}(700)\right]$
\rightarrow exotics, tetra-quarks, pentaquark,...
- new high data sample from LHCb \longrightarrow more to come from LHCb, Bellell, BESIII \longrightarrow simple models (only focus on two-body resonances) are not enough to explain data anymore theoretical challenge!
- $B^{ \pm} \rightarrow h^{ \pm} h^{-} h^{+}$LHCh massive localized Acp

LHCb PRD90 (2014) 112004 new one coming soon

- suggest dynamic effect

- middle looks "empty"

- Ist observation in charm $2019 A_{c p}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{c p}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)$
\rightarrow CPV on charm three-body?
can lead to new physics

phase-space in D and B decays

- \neq scales!!! \rightarrow still similar FSI
- 3-body effects expected to be smaller in B

- ex: $D^{+} \rightarrow K^{-} K^{+} K^{-}$

primary vertex
- weak -

QCD, CKM coupling and phase

$$
\begin{aligned}
& \text { Final State Interactions } \\
& \text { - strong - } \\
& \\
&(2+1)+3 \text {-body interactions }
\end{aligned}
$$

LHCb Preliminary

Dalitz plot

- To extract information from data we need an amplitude MODEL

$$
\frac{d \Gamma}{d s_{12} d s_{23}}=\left.\frac{1}{(2 \pi)^{3}} \frac{1}{32 M^{3}} \mathcal{A}\left(s_{12}, s_{23}\right)\right|^{2}
$$

- common cartoon to described 3-body decay
$D^{0} \rightarrow K_{s} \pi^{-} \pi^{+}$

- isobar model widely used by experimentalists:
- ($2+\mathrm{I}$) approximation \rightarrow ignore the interaction with 3rd particle (bachelor)
- $A=\sum c_{k} A_{k},+$ NR coherent sum of amplitude's in different parcial waves

Warning: when A_{k} are single resonances
defined as Breit-Wigner $\operatorname{BW}\left(s_{12}\right)=\frac{1}{m_{R}^{2}-s_{12}-i m_{R} \Gamma\left(s_{12}\right)}$,

- sum of BW violates two-body unitarity (close Rs in the same channel - scalars)
- resonance's mass and width are processes dependent
- movement to use better 2-body (unitarity) inputs in data analysis
- "K-matrix": π T S-wave 5 coupled-channel modulated by a production amplitude used by Babar, LHCb, BES III

new parametrization Pelaez, Rodas, Elvira Eur.Phys.J.C 79 (20I9) I2, I008
\rightarrow still not enough to fully described data
- from theory: list of scalar and vector form factors

$$
\begin{aligned}
& <\pi \pi \mid 0>\text { Moussallam EPJ C I4, III (2000); Daub, Hanhart, and B. Kubis JHEP } 02 \text { (2016) 009. Hanhart, PL B7I5, I70 (20I2). } \\
& \text { Dumm and Roig EPJ C 73, } 2528 \text { (20I3). } \\
& <K \pi \mid 0>\text { Moussallam EPJ C 53, 40I (2008) Jamin, Oller and Pich, PRD 74, } 074009 \text { (2006) Boito, Escribano, and Jamin EPJ C 59, } 82 \text { I (2009). } \\
& <K K \mid 0>\quad \text { Fit from 3-body data PCM, Robilotta + LHCb JHEP } 1904 \text { (2019) } 063 \\
& \text { no data extrapolate from unitarity model Albaladejo and Moussallam EPJ C 75, } 488 \text { (2015). } \\
& \text { quark model with isospin symmetry Bruch, Khodjamirian, and Kühn, EPJ C 39, 4I (2005) }
\end{aligned}
$$

- we need non-perturbative meson-meson interactions up to.... 3 GeV
- extend 2-body amplitude theory validity

Ropertz, Kubis, Hanhart EPJWeb Conf. 202 (2019) 06002

PCM, A.dos Reis, Robilotta PRD I02, 0760 I2 (2020)

Tool kit for meson-meson interactions in 3-body decay

- Any 3-body decay amplitude

Form factor
meson-meson

$$
- \text { © }=\square+\cdots
$$

(A) $=\mathbb{K}+\mathbb{K}+\mathbb{K}$ (K) $\mathbb{K}+\cdots$
provide the building block

- includes multiple resonances in the same channel (as many as wanted)
- free parameter (massas and couplings) to be fitted to data.
\rightarrow Available to be implement in data analysis!!

full $\pi \pi 3$ coupled-channel amplitude

- 3 resonances: $m x=0.98, m y=1.37, m z=1.7 \mathrm{GeV}$ α and β are couplings of Rz

\rightarrow Extra res do not disturb the low-energy!
\rightarrow parameter should be fixed by data
- Three-body FSI (beyond 2+I)

- shown to be relevant on charm sector

Decay projected in one pair mass

Three-body Models

- Three-body FSI (beyond 2+I)

$\rightarrow \quad$ will be important for precision

CPV at low and high mass

- What are the mechanisms behind these CPV patterns?

LHCb PRD90 (2014) 112004

- massive phase-space localized Asymmetry

$$
A_{C P}=\frac{\Gamma(M \rightarrow f)-\Gamma(\bar{M} \rightarrow \bar{f})}{\Gamma(M \rightarrow f)+\Gamma(\bar{M} \rightarrow \bar{f})}
$$

- condition to CPV:

$2 \neq$ amplitudes, SAME final state,
\neq strong (δ_{i}) and weak (ϕ_{i}) phases

$$
\begin{aligned}
\langle f| T|M\rangle & =A_{1} e^{i\left(\delta_{1}+\phi_{1}\right)}+A_{2} e^{i\left(\delta_{2}+\phi_{2}\right)} \\
\langle\bar{f}| T|\bar{M}\rangle & =A_{1} e^{i\left(\delta_{1}-\phi_{1}\right)}+A_{2} e^{i\left(\delta_{2}-\phi_{2}\right)}
\end{aligned}
$$

$$
\left.\Gamma(M \rightarrow f)-\Gamma(\bar{M} \rightarrow \bar{f})=|\langle f| T| M\rangle\left.\right|^{2}-|\langle\bar{f}| T| \bar{M}\right\rangle\left.\right|^{2}=-4 A_{1} A_{2} \sin \left(\delta_{1}-\delta_{2}\right) \sin \left(\phi_{1}-\phi_{2}\right)
$$

- CPV at quark level: BSS model

- not enough

\rightarrow hadronic interactions as source of strong phase
- CPT must be preserved

Lifetime $\quad \tau=1 / \Gamma_{\text {total }}=1 / \bar{\Gamma}_{\text {total }}$ $\bar{\Gamma}_{\text {total }}=\bar{\Gamma}_{1}+\bar{\Gamma}_{2}+\bar{\Gamma}_{3}+\bar{\Gamma}_{4}+\bar{\Gamma}_{5}+\bar{\Gamma}_{6}+\ldots$

$\Gamma_{\text {toat }}=\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}+\Gamma_{6}+\ldots \quad$ CPV in one channel should be compensated by another one with opposite sign

- rescattering $\pi \pi \rightarrow K K$

explain CPV at [1-1.6] GeV
Frederico, Bediaga, Lourenço
PRD89(2014)094013

$B^{ \pm} \rightarrow \pi^{ \pm} K^{-} K^{+}$

- confirmed by LHCb Amplitude Analysis $B^{ \pm} \rightarrow \pi^{-} \pi^{+} \pi^{ \pm}$and $B^{ \pm} \rightarrow \pi^{ \pm} K^{-} K^{+}$

[^0]
CPV: amplitude analysis $B^{ \pm}$

$\rightarrow \pi^{-} \pi^{+} \pi^{ \pm}$

- LHCh recent Amplitude analysis $B^{ \pm} \rightarrow \pi^{-} \pi^{+} \pi^{ \pm} \quad$ PRDIOI (2020) 012006; PRL 124 (2020) 031801
- $\left(\pi^{-} \pi^{+}\right)_{S-W a v e} 3$ different model:
$\rightarrow \sigma$ as BW (!) + rescattering;
$\hookrightarrow P$-vector K-Matrix;
\hookrightarrow binned freed lineshape (QMI);

Contribution
Isobar model

Isobar model				
$\rho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$	-	-
$\omega(782)$	$0.50 \pm 0.03 \pm 0.05$	$-4.8 \pm 6.5 \pm 3.8$	$-19 \pm 6 \pm 1$	$+8 \pm 6 \pm 1$
$f_{2}(1270)$	$9.0 \pm 0.3 \pm 1.5$	$+46.8 \pm 6.1 \pm 4.7$	$+5 \pm 3 \pm 12$	$+53 \pm 2 \pm 12$
$\rho(1450)^{0}$	$5.2 \pm 0.3 \pm 1.9$	$-12.9 \pm 3.3 \pm 35.9$	$+127 \pm 4 \pm 21$	+154土 4土 6
$\rho_{3}(1690)^{0}$	$0.5 \pm 0.1 \pm 0.3$	$-80.1 \pm 11.4 \pm 25.3$	$-26 \pm 7 \pm 14$	$-47 \pm 18 \pm 25$
S-wave	$25.4 \pm 0.5 \pm 3.6$	$+14.4 \pm 1.8 \pm 2.1$	-	
Rescattering	$1.4 \pm 0.1 \pm 0.5$	$+44.7 \pm 8.6 \pm 17.3$	$-35 \pm 6 \pm 10$	$-4 \pm 4 \pm 25$
σ	$25.2 \pm 0.5 \pm 5.0$	$+16.0 \pm 1.7 \pm 2.2$	$+115 \pm 2 \pm 14$	$+179 \pm 1 \pm 95$
K-matrix				
$\rho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$	-	-
$\omega(782)$	$0.47 \pm 0.04 \pm 0.03$	$-6.2 \pm 8.4 \pm 9.8$	$-15 \pm 6 \pm 4$	$+8 \pm 7 \pm 4$
$f_{2}(1270)$	$9.3 \pm 0.4 \pm 2.5$	$+42.8 \pm 4.1 \pm 9.1$	$+19 \pm 4 \pm 18$	$+80 \pm 3 \pm 17$
$\rho(1450)^{0}$	$10.5 \pm 0.7 \pm 4.6$	$+9.0 \pm 6.0 \pm 47.0$	$+155 \pm 5 \pm 29$	$-166 \pm 4 \pm 51$
$\rho_{3}(1690)^{0}$	$1.5 \pm 0.1 \pm 0.4$	$-35.7 \pm 10.8 \pm 36.9$	$+19 \pm 8 \pm 34$	$+5 \pm 8 \pm 46$
S-wave	$25.7 \pm 0.6 \pm 3.0$	$+15.8 \pm 2.6 \pm 7.2$	-	
QMI				
$\rho(770)^{0}$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$	-	-
$\omega(782)$	$0.57 \pm 0.10 \pm 0.17$	$-7.9 \pm 16.5 \pm 15.8$	$-25 \pm 6 \pm 27$	$-2 \pm 7 \pm 11$
$f_{2}(1270)$	$9.6 \pm 0.4 \pm 4.0$	$+37.6 \pm 4.4 \pm 8.0$	$+13 \pm 5 \pm 21$	$+68 \pm 3 \pm 66$
$\rho(1450)^{0}$	$7.4 \pm 0.5 \pm 4.0$	$-15.5 \pm 7.3 \pm 35.2$	$+147 \pm 7 \pm 152$	$-175 \pm 5 \pm 171$
$\rho_{3}(1690)^{0}$	$1.0 \pm 0.1 \pm 0.5$	$-93.2 \pm 6.8 \pm 38.9$	$+8 \pm 10 \pm 24$	$+36 \pm 26 \pm 46$
S-wave	$26.8 \pm 0.7 \pm 2.2$	$+15.0 \pm 2.7 \pm 8.1$	-	-

- ANA for $B^{ \pm} \rightarrow \pi^{ \pm} K^{-} K^{+}$PRL 123 (2019) 231802

Contribution	Fit Fraction(\%)	$A_{C P}(\%)$	Magnitude $\left(B^{+} / B^{-}\right)$	Phase $\left[^{0}\right]\left(B^{+} / B^{-}\right)$
$K^{*}(892)^{0}$	$7.5 \pm 0.6 \pm 0.5$	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_{0}^{*}(1430)^{0}$	$4.5 \pm 0.7 \pm 1.2$	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176 \pm 10 \pm 16$
			$0.82 \pm 0.09 \pm 0.10$	$136 \pm 11 \pm 21$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138 \pm 7 \pm 5$
			$1.97 \pm 0.12 \pm 0.20$	$166 \pm 6 \pm 5$
$\rho(1450)^{0}$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175 \pm 10 \pm 15$
			$1.92 \pm 0.10 \pm 0.07$	$140 \pm 13 \pm 20$
$f_{2}(1270)$	$7.5 \pm 0.8 \pm 0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106 \pm 11 \pm 10$
			$1.13 \pm 0.08 \pm 0.05$	$-128 \pm 11 \pm 14$
Rescattering	$16.4 \pm 0.8 \pm 1.0$	$-66.4 \pm 3.8 \pm 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56 \pm 12 \pm 18$
			$0.86 \pm 0.07 \pm 0.04$	$-81 \pm 14 \pm 15$
$\phi(1020)$	$0.3 \pm 0.1 \pm 0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52 \pm 23 \pm 32$
			$0.22 \pm 0.06 \pm 0.04$	$107 \pm 33 \pm 41$

- understand global asymmetries in LHCb data

$$
q=d, s
$$

- understand global asymmetries in LHCb data

Decay channel	$\Delta \Gamma_{C P}\left(10^{6} \mathrm{~s}^{-1}\right)$
$B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$	$+0.84 \pm 0.25$
$B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$	-0.68 ± 0.17
$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$	$+0.53 \pm 0.13$
$B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}$	-0.39 ± 0.07

$$
\begin{aligned}
\Delta \Gamma_{C P}\left(h_{1}^{ \pm} h_{2}^{+} h_{3}^{-}\right) & =\Gamma\left(B^{-} \rightarrow h_{1}^{-} h_{2}^{+} h_{3}^{-}\right)-\Gamma\left(B^{+} \rightarrow h_{1}^{+} h_{2}^{-} h_{3}^{+}\right) \\
& =A_{C P}\left(B^{ \pm} \rightarrow h_{1}^{ \pm} h_{2}^{+} h_{3}^{-}\right) \mathcal{B}\left(B^{+} \rightarrow h_{1}^{+} h_{2}^{+} h_{3}^{-}\right) / \tau\left(B^{+}\right) \\
\sum_{\Delta \Gamma_{C P}} \mathrm{CPT} & =4 \operatorname{Im}\left[V_{u b}^{*} V_{u q} V_{c b} V_{c q}^{*}\right] \sum_{j, k} \operatorname{Im}\left[S_{j, i} S_{k, i}^{*} \mathcal{U}_{q_{j}}^{*} \mathcal{C}_{q_{k}}\right]
\end{aligned}
$$

- U-Spin symmetry: quark (s, d) form a dublet

$$
\begin{aligned}
\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right) & =-\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right) \\
\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right) & =-\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)
\end{aligned}
$$

$\Omega \operatorname{Im}\left(V_{u b}^{*} V_{u s} V_{c b} V_{c s}^{*}\right)=-\operatorname{Im}\left(V_{u b}^{*} V_{u d} V_{c b} V_{c d}^{*}\right)$
CKM unitarity
Bhattacharya, Gronau, Rosner, PLB 726 (2013) 337

- $d \leftrightarrow s$ everywhere

$$
\frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)}=-0.46 \pm 0.16 \text { and } \frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)}=-0.77 \pm 0.27
$$

- $d \leftrightarrow s$ weak-vertex

$$
\frac{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)}{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)}=1.59 \pm 0.62 \text { and } \frac{\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)}=1.77 \pm 0.55 \text { contradiction }
$$

- $\sum \Delta \Gamma_{C P}=0 \rightarrow \Delta \Gamma\left(q_{\pi \pi}\right)=-\Delta \Gamma\left(q_{K K}\right)$
- $\frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)}=-0.73 \pm 0.23 \quad \frac{\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)}=-0.81 \pm 0.32$

\rightarrow CPT on strong interaction

$\Delta S=0, \quad B^{ \pm} \rightarrow \pi^{ \pm} K^{+} K^{-}, \pi^{ \pm} K^{0} \bar{K}^{0}, K^{ \pm} \overline{\mathrm{K}}^{0} \pi^{0}, \pi^{ \pm} \pi^{+} \pi^{-}, \pi^{ \pm} \pi^{0} \pi^{0}$
$\Delta S=1 \quad B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}, \pi^{ \pm} K^{0} \pi^{0}, K^{ \pm} \pi^{0} \pi^{0}, K^{ \pm} K^{0} \bar{K}^{0}, K^{ \pm} K^{+} K^{-}$ three-body re-scattering is expect to be small

CPT constraint for decay channels coupled by the strong interaction

$$
\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)+\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{0} \bar{K}^{0}\right)+\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)+\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{0} \pi^{0}\right)=0
$$

$\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)+\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{0} \pi^{0}\right)+\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)+\Delta \Gamma_{C P}\left(K^{ \pm} K^{0} \bar{K}^{0}\right)=0$

assuming:

$\left.\begin{array}{l}\frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{0} \bar{K}^{0}\right)} \sim 1 \quad \text { and } \quad \frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{+} \pi^{-}\right)}{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{0} \pi^{0}\right)} \sim 1 \\ \frac{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{+} \pi^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{0} \pi^{0}\right)} \sim 1 \quad \text { and } \quad \frac{\Delta \Gamma_{C P}\left(K^{ \pm} K^{+} K^{-}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} K^{0} \bar{K}^{0}\right)} \sim 1\end{array}\right\} \frac{\Delta \Gamma_{C P}\left(\pi^{ \pm} K^{0} \bar{K}^{0}\right)}{\Delta \Gamma_{C P}\left(\pi^{ \pm} \pi^{0} \pi^{0}\right)} \sim-1 \quad$ and $\quad \frac{\Delta \Gamma_{C P}\left(K^{ \pm} K^{0} \bar{K}^{0}\right)}{\Delta \Gamma_{C P}\left(K^{ \pm} \pi^{0} \pi^{0}\right)} \sim-1$

- $B^{+} \rightarrow K^{-} K^{+} K^{+}$
- analogue of $\pi \pi \leftrightarrow K K$ but with $D \bar{D} \rightarrow K^{+} K^{-}\left(\pi^{+} \pi^{-}\right)$
- charm triangle

$$
\begin{aligned}
& \operatorname{Br}\left[B \rightarrow D D_{s}^{*}\right] \sim 1 \% \\
& \rightarrow \quad 1000 \times \operatorname{Br}[B \rightarrow K K K]
\end{aligned}
$$

- change sign $\sim D \bar{D}$ open channel
\rightarrow how the change in sign leads to CPV?

- high mass CPV study in $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{-} \pi^{+}$
- Focus on $m_{\pi \pi}^{2}>3 \mathrm{GeV}^{2}$
\longrightarrow avoid low energy resonances
- include $\chi_{c 0}$ (expected in Run II)
- Important data features

- data shows a huge CP asymmetry around $m_{\chi_{c 0}}^{2}=11.65 \mathrm{GeV}^{2}$
- wide CP asymmetry: same source for a nonresonant amplitude and $\chi_{c 0}$ charm loop and $\chi_{c 0}$

Amplitude model

- Amplitude Model for $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{-} \pi^{+}$high mass $m_{\pi \pi}^{2}>3 \mathrm{GeV}^{2}$

$$
A_{B^{ \pm} \rightarrow \pi^{-} \pi^{+} \pi^{ \pm}}\left(s_{12}, s_{23}\right)=A_{\text {tree }}^{ \pm}\left(s_{12}, s_{23}\right)+A_{D \bar{D}}\left(s_{12}, s_{23}\right)
$$

- $A_{\text {tree }}^{ \pm}=a_{0} e^{ \pm i \gamma}$: weak phase γ from the dominant $b \rightarrow u$ tree diagram

\rightarrow Nonresonant (only resonances tails)
$\rightarrow a_{0}$ is complex (strong phase)
- $A_{D \bar{D}}$ charm rescattering with $\chi_{c 0}$: source of strong phase variation

\rightarrow similar triangle loop

- the goal was to reproduce the main observed CPV characteristics $\}$

Amplitude projection

Acp signature

$$
\begin{aligned}
\gamma & =70^{\circ} \\
a_{0} & =2 e^{\left(\delta_{s}=45^{\circ}\right)}
\end{aligned}
$$

- LHCD Run I

- not the same binning and scale
- mimic some of the CPV pattern at high mass
- superposition of triangles and exited states can enlarge de CPV signature
\rightarrow parameters have to be fitted to data
\rightarrow will be included in amplitude analysis of Run II data
- FSI play an important role in B and D hadronic decays
-D decays: three-body effects are important for describe/understand data
\longrightarrow extract 2-body information from data
\longrightarrow important for precision and CPV searches
- B decays: understand of CPV at low and high mass regions
$\longrightarrow \pi \pi \rightarrow K K$ rescattering dominates the global $A_{C P}$ in $B \rightarrow h h h$ \longrightarrow make predictions to neutron modes!
\longrightarrow Charm rescattering triangles is an important mechanism
ζ interference produce similar CPV data signature
- two-body coupled-channel description is crucial!!!
- tool kit for amplitude analysis with theoretically sound models to ANA
\rightarrow need to extend the energy range of meson-meson. Include the open charm
- Where phenomenology have to improve?
- models need to connect the weak and strong description

\rightarrow QCDF and FSI

- models have to merge low and high FSI
obrigada!!
\#staysafe

Backup slides

- $\pi \pi$ scattering data
- amplitude $\hat{f}_{l}(s)=\left[\frac{\eta_{l} e^{2 i \delta_{l}}-1}{2 i}\right]$.
- inelasticity

Inelasticity: one minus the probability of losing signal (1=>elastic)

decay models available - weak sector

- QCD factorization approach \rightarrow factorize the quark currents $\mathcal{H}_{\text {eff }}^{\triangle B=1}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p q}^{*} V_{p b}\left[C_{1}(\mu) O_{1}^{p}(\mu)+C_{2}(\mu) O_{2}^{p}(\mu)+\sum_{i=3}^{10} C_{i}(\mu) O_{i}(\mu)\right.$ $\left.+C_{7 \gamma}(\mu) O_{7 \gamma}(\mu)+C_{8 g}(\mu) O_{8 g}(\mu)\right]+$ h.c.,
\rightarrow ex: $\quad B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$how to describe it?
$\mathbf{A} \sim\langle[\underbrace{\left\langle\pi^{+}\left(p_{2}\right) \pi^{-}\right.}_{\mathrm{R}}\left(p_{3}\right)]|(\bar{u} b)_{V-A}\left|B^{-}\right\rangle\left\langle\pi^{-}\left(p_{1}\right)\right|(\bar{d} u)_{V-A}|0\rangle \boldsymbol{+}\left\langle\pi^{-}\left(p_{1}\right)\right|(\bar{d} b)_{s c-p s}\left|B^{-}\right\rangle\langle[\pi^{+}(\underbrace{}_{\mathrm{F}} \underbrace{\left.\left.p^{-}\left(p_{3}\right)\right]\left|(\bar{d} d)_{s c+p s s}\right| 0\right\rangle}$
- naive factorization $\left\{\begin{array}{l}- \text { intermediate by a resonance } R \text {; } \\ - \text { FSI with scalar and vector form factors FF }\end{array}\right.$
parametrizations for B and $D \rightarrow 3 h \quad$ Boito et al. PRD96 ||3003 (20|7)
- modern QDC factorization: different in each region
\hookrightarrow improvement over ($2+\mathrm{I}$)
\rightarrow introduce new non-perturbative strong phase Klein, Mannel,Virto, Keri Vos JHEPIO II7 (20I7)

decay models available - weak sector

- QCDF predictions

Branching Fraction (tree dominated decays)

	Theory I		Theory II		Experiment
$B^{-} \rightarrow \pi^{-} \pi^{0}$	$5.43{ }_{-0.06}^{+0.06}+1.45$	(*)	$5.82{ }_{-0.06}^{+0.07}+1.42$	(*)	$5.59{ }_{-0.40}^{+0.41}$
$\bar{B}_{d}^{0} \rightarrow \pi^{+} \pi^{-}$	$7.37{ }_{-0.69}^{+0.86}+{ }_{-0.97}^{+1.22}$	(*)	$5.70{ }_{-0.55}^{+0.70}+1.16 .97$	(*)	5.16 ± 0.22
$\bar{B}_{d}^{0} \rightarrow \pi^{0} \pi^{0}$	$0.33{ }_{-0.08}^{+0.11}{ }_{-0.17}^{+0.42}$		$0.633_{-0.10}^{+0.12}+0.64$		1.55 ± 0.19
			BELLE CKM	M 14:	0.90 ± 0.16
$B^{-} \rightarrow \pi^{-} \rho^{0}$	$8.68{ }_{-0.41}^{+0.42}{ }_{-1.56}^{+2.71}$	($\star *$)	$9.84_{-0.40}^{+0.41+2.54}$	($\star \star$)	$8.3_{-1.3}^{+1.2}$
$B^{-} \rightarrow \pi^{0} \rho^{-}$	$12.38{ }_{-0.77}^{+0.90}{ }_{-1.41}^{+2.18}$		$12.13{ }_{-0.73}^{+0.85}+2.23$	(*)	$10.9{ }_{-1.5}^{+1.4}$
$\bar{B}^{0} \rightarrow \pi^{+} \rho^{-}$	$17.80{ }_{-0.56}^{+0.62}{ }_{-2.10}^{+1.76}$	(*)	$13.76{ }_{-0.44}^{+0.49}+{ }_{-2.18}^{2.77}$	(*)	15.7 ± 1.8
$\bar{B}^{0} \rightarrow \pi^{-} \rho^{+}$	$10.28{ }_{-0}^{+0.39+1.37}$	(**)	$8.14{ }_{-0.33-1.39}^{+0.34}$	(**)	7.3 ± 1.2
$\bar{B}^{0} \rightarrow \pi^{ \pm} \rho^{\mp}$	$28.08{ }_{-0.19}^{+0.27}{ }_{-3.50}^{+3.82}$	(\dagger)	$21.90{ }_{-0.12}^{+0.20}{ }_{-3.55}^{+0.06}$	(\dagger)	23.0 ± 2.3
$\bar{B}^{0} \rightarrow \pi^{0} \rho^{0}$	$0.52{ }_{-0.03}^{+0.04}{ }_{-0.43}^{+1.11}$		$1.49 \begin{gathered} -0.12-3.57 \\ -0.07-1.77 \\ \hline 0.29 \end{gathered}$		2.0 ± 0.5
$B^{-} \rightarrow \rho_{L}^{-} \rho_{L}^{0}$	$18.42_{-0.21}^{+0.23+2.55}+3.92$	(**)	$19.06_{-0.22}^{+0.24}+4.59$	(**)	$22.8{ }_{-1.9}^{+1.8}$
$\bar{B}_{d}^{0} \rightarrow \rho_{L}^{+} \rho_{L}^{-}$	$25.98_{-0.77}^{+0.85}+3.43$	($\star \star$)	$20.66_{-0.62-3.75}^{+0.62}$	(**)	$23.7_{-3.2}^{+1.1}$
$\bar{B}_{d}^{0} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$	$\begin{array}{r} -0.77-3.43 \\ 0.39_{-0.03-0.36}^{+0.03+0.83} \end{array}$		$\begin{gathered} -0.62-3.75 \\ 1.05_{-0.04-1.04}^{+0.05+1.62} \end{gathered}$		$0.55_{-0.24}^{+0.22}$

Theory I: $f_{+}^{B \pi}(0)=0.25 \pm 0.05, A_{0}^{B \rho}(0)=0.30 \pm 0.05, \lambda_{B}(1 \mathrm{GeV})=0.35 \pm 0.15 \mathrm{GeV}$ Theory II: $f_{+}^{B \pi}(0)=0.23 \pm 0.03, A_{0}^{B \rho}(0)=0.28 \pm 0.03, \lambda_{B}(1 \mathrm{GeV})=0.20_{-0.00}^{+0.05} \mathrm{GeV}$
not good agreement for Acp

Beneke Seminar at "Future Challenges in Non-Leptonic B Decays", Bad Honnef, 2016

\rightarrow good agreement for Br

Acp (penguin dominante decays)

f	NLO	NNLO	NNLO + LD	Exp
$\pi^{-} \bar{K}^{* 0}$	$1.36{ }_{-0.26}^{+0.25}+0.60$	$1.49{ }_{-0.29}^{+0.27}{ }_{-0.56}+0.69$	$0.27_{-0.05}^{+0.05}{ }_{-0.67}+1$.	-3.8 ± 4.2
$\pi^{0} K^{*-}$	$13.85{ }_{-2.70-5.86}^{+2.40+54}$	$18.16_{-3.52-10.57}^{+3.11+}$	$-15.81_{-2.83-15.39}^{+3.01+69.35}$	-6 ± 24
$\pi^{+} K^{*-}$	$11.18_{-2.15}^{+2.00}{ }_{-10.62}^{9.75}$	$19.70_{-3.80-11.42}^{+3.37}+10.54$	$-23.07_{-4.05}^{+4.35}+86.264$	-23 ± 6
$\pi^{0} \bar{K}^{* 0}$	$-17.233_{-3.00}^{+3.33-72.57}$	$-15.11_{-2.65-10.64}^{+2.93+12.34}$	$2.16{ }_{-0.42}^{+0.39+36.80}$	-15 ± 13
$\delta\left(\pi \bar{K}^{*}\right)$	$2.68{ }_{-0.67}^{+0.72}+{ }_{-4.34}$	$-1.54{ }_{-0.58}^{+0.45}+{ }_{-9.19}$	$7.26{ }_{-1.34}^{+1.21+20.65}$	17 ± 25
$\Delta\left(\pi \bar{K}^{*}\right)$	$-7.18{ }_{-1.28}^{+1.38}{ }_{-5.35}+3.38$	$-3.45{ }_{-0.59}^{+0.67+4.95}$	$-1.02_{-0.18}^{+0.19+7.36}$	-5 ± 45
$\rho^{-} \bar{K}^{0}$	$0.38{ }_{-0.07}^{+0.07}{ }_{-0.27}^{+0.16}$	$0.22_{-0.04}^{+0.04}{ }_{-0.17}^{+0.19}$	$0.30_{-0.06}^{+0.06+2.39}$	-12 ± 17
$\rho^{0} K^{-}$	$-19.31_{-3.61}^{+3.42+8.96}$	$-4.17_{-0.80}^{+0.759 .52}{ }_{-19.26}$	$43.73{ }_{-7.62}^{+7.07}{ }_{-137.77}^{44.00}$	37 ± 11
$\rho^{+} K^{-}$	$-5.13_{-0.97}^{+0.95}+6.02$	$1.50_{-0.27}^{+0.29}{ }_{-10.36}^{8.69}$	$25.93_{-4.90}^{+4.43+25.40}+63$	20 ± 11
$\rho^{0} \bar{K}^{0}$	$8.63_{-1.65-1.69}^{+1.59}$	$8.99_{-1.71-7.44}^{+1.66}+3.60$	$-0.42_{-0.08}^{+0.08}+8.78$	6 ± 20
$\delta(\rho \bar{K})$	$-14.17_{-2.96}^{+2.80}+7.989$	$-5.67{ }_{-1.01}^{+0.96}+{ }_{-9.79}+1086$	$17.80{ }_{-3.01}^{+3.15}+19.514$	17 ± 16
$\Delta(\rho \bar{K})$	$-8.75{ }_{-1.66}^{+1.62+4.78}$	$-10.84_{-2.09}^{+1.98+9.09}$	$-2.43_{-0.42}^{+0.46}{ }_{-19.43}^{4.60}$	-37 ± 37

phenomenological $D \bar{D} \rightarrow \pi^{+} \pi^{-}$amplitude

$\rightarrow \chi_{c 0(3414)}$: a pole bellow $D \bar{D}$ threshold in δ_{2}

- amplitude features:
- $\chi_{c 0}$ peak superposed to a wide bump below threshold;
- zero at $D \bar{D}$ threshold
- phase jump at $D \bar{D}$ threshold

\rightarrow parameters should should be fitted
$\begin{aligned} T_{\overline{D^{0} D^{0} \rightarrow K K}}(s) & =\frac{s^{\alpha}}{s_{t h D \bar{D}}^{\alpha}} \frac{2 \kappa_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi+\alpha}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}+\kappa_{2}}{\frac{1}{a}-\kappa_{2}}\right)\right]^{\frac{1}{2}}, s<s_{t h D \bar{D}} \quad \text { parameters } \\ & =-i \frac{2 k_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi}\left(\frac{m_{0}}{s-m_{0}}\right)^{\beta}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}-i k_{2}}{\frac{1}{a}+i k_{2}}\right)\right]^{\frac{1}{2}}, s \geq s_{t h D \bar{D}} \quad \text { fix by data! }\end{aligned}$

\longrightarrow zero at threshold
discontinuity at threshold

Final Amplitude

- $A=i C m_{a}^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{T_{\bar{D}^{0} D^{0} \rightarrow K K}\left(s_{23}\right)\left[-2 p_{3}^{\prime} \cdot\left(p_{2}^{\prime}-p_{1}\right)\right]}{\Delta_{D^{+*}} \Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{a}}$,

\longrightarrow zero in between two bumps
rescattering $D^{0} \bar{D}^{0} \rightarrow K^{+} K^{-}$ play a major role

Kpp

KKK

[^0]: PRDIOI (2020) 0I2006; PRL I24 (2020) 03180 I PRL I23 (2019) 231802

