Multiquark states: from mesons and baryons to exotic tetraquarks and pentaquarks

Elena Santopinto
INFN, Sezione di Genova
HADRONS 2021
13-17 September 2021
São José dos Campos, Brazil

Hidden charm and beauty hadrons reveal tetraquarks and pentaquarks

-Heavy quark pairs are difficult to be created or destroyed by QCD forces inside hadrons.
-Hadrons with a $c \bar{c}$ or $b \bar{b}$ pair and electrically charged must contain additional light quarks, realising the hypothesis advanced by Gell-Mann in the Sixties

M. Gell-Mann, A Schematic Model of Baryons and Mesons, PL 8, 214, 1964

-These are the exotic $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ mesons and the pentaquarks discovered over the last decade

There are indeed new valence quark configurations !!

- Tetraquarks are more easy to find at the increase of the quark mass, just as pentaquarks

The precence oh heavy quarks appear to increase the possibility of bound

- Hidden heavy flavors have been the first, now we also have the LHCb open heavy flavor $\mathrm{X}_{0}(2900) \mathrm{J}^{\mathrm{P}}=0^{+}$and $\mathrm{X}_{1}(2900) \mathrm{J}^{\mathrm{P}}=1^{-}$in the $\mathrm{D}+\mathrm{K}$ - channel ($\bar{c} \bar{s} u d$ or $\mathrm{D}^{*} \mathrm{~K}^{*}$ molecule ?)
- First unexpected charmonium is the still controversial X(3872) (discovered by Belle 2003)
- Nearness to heavy pair threshold is to be expected, but the $\mathrm{X}(3872)$ is exceptionally close, we do not know yet if it is above or below the D0 D0* threshold, within some 80 keV .
Still controversial because very close tp the threshold

Explicit Tetraquarks: $\mathbf{Z}_{\mathrm{c}}(4430)^{ \pm}$

"Observation of the resonant character of the $\mathrm{Z}(4430)^{-}$ state".LHCb, Physical Review Letters. 112 (22): 222002(2014).

Argand diagram of $Z(4430)$ is consistent with this structure being a resonance
$\mathrm{Z}_{\mathrm{c}}(4020)^{ \pm} \rightarrow \mathrm{h}_{\mathrm{c}}+\pi$
$\mathrm{Z}_{\mathrm{c}}(4020)^{ \pm .8 .9 \sigma}$

Recent reports of Exotic hadrons!

$\triangleright X(6900)$ (ccc̄c̄)
Science Bulletin 65 (2020) 1983

Recent reports of Exotic hadrons!

$\triangleright X(6900)(\operatorname{cc\overline {c}} \bar{c})$
Science Bulletin 65 (2020) 1983

$X_{0,1}$ (2900) (crud)

LHCb, PRL125, 242001 (2020), Phys. Rev. D 102, 112003 (2020)

Recent reports of Exotic hadrons!

$\triangleright X(6900)$ (cccc)
Science Bulletin 65 (2020) 1983

$Z_{c s}$ (cesū)
BESIII Phys. Rev. Lett. 126, 102001 (2021)]

$X_{0,1}$ (2900) (csud)

LHCb, PRL125, 242001 (2020), Phys. Rev. D 102, 112003 (2020)

LHCb PRL115(2015)072001, PRL122(2019)222001, 2012.10380 LHCb arXiv:2108.04720v1 [hep-ex] 10 Aug 2021

- Many exotics have been reported by Experiments (Belle, BESIII, LHCb, ...)

Observation of the doubly charmed $T_{c c}^{+}$in $D^{0} D^{0} \pi^{+}$invariant mass distribution with a 22 standard deviations arXiv:2109.01038, arXiv:2109.01056 (2 September 2021)
The minimal quark content for this newly observed state is $c c \bar{u} \bar{d}$

> Mass and width
$M \simeq 3875 \mathrm{MeV}$
$\Gamma \simeq 0.410 \mathrm{MeV}$
'This is the narrowest exotic state observed to date'

Moreover, a combination of the near-threshold mass, narrow decay width and its appearance in prompt hadroproduction show its genuine resonance nature. This is the first such exotic resonance ever observed.' (arXiv:2109.01038)

Found to be below the $D^{*+} D^{0}$ threshold (with 4.3σ significance for "below $D^{*+} D^{0 "}$)
$D^{*+} D^{0}$ threshold is at 3875.1 MeV

Summary of Results

- A narrow peak in $\mathrm{D}^{0} \mathrm{D}^{0} \pi^{+}$below $\mathrm{D}^{0} \mathrm{D}^{*+}$ threshold is observed with $\mathrm{S}>20 \sigma$
- Naive BW parameters:

$$
\begin{aligned}
\delta m_{\mathrm{BW}} & =-273 \pm 61 \pm 5_{-14}^{+11} \mathrm{keV} / c^{2}, \\
\Gamma_{\mathrm{BW}} & =410 \pm 165 \pm 43_{-38}^{+18} \mathrm{keV},
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\boldsymbol{M} & =M_{D^{*+} D^{0}}-\delta m_{B W} \\
& =\left(3875.1-0.273 \pm 0.061 \pm 0.005_{-0.014}^{+0.011}\right) \mathrm{MeV} \\
& =(\mathbf{3 8 7 4 . 8 3} \pm \mathbf{0 . 0 6 1} \pm \mathbf{0 . 0 0 5} \\
-0.014
\end{array}\right) \mathbf{M e V}
$$

The mystery of conformation

Currently one of the unresolved questions about tetraquarks concerns the arrangement of their structure. We know that they are made up of 4 quarks but we do not know how tight the bond of these components is. According to some physicists, the tetraquark can be thought of as a compact object, like the proton or the neutron. Another hypothesis represents them as molecular states, such as structure composed of 2 meson substructures. In a similar way for pentaquarks we can think of them as compact 5 quarks or as baryon-meson molecular states.

No consensus, yet

Hadronic Molecule
F-K. Guo, C. Hanhart, Christoph, U-G Meißner, Q. Wang, Q. Zhao, and B-S Zou, arXiv 1705.00141 (2017)
L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D 89 (2014) 114010.
M. Anwar, J. Ferretti, E. Santopinto, Phys. Rev. D 98 (2018) 094015

More new valence quark configurations

$\Lambda_{b} \rightarrow K^{-}+J / \psi+P$

LHCb

Phys. Rev. Lett.115(2015) 072001

The LHCb observation [1] was further supported by another two articles by the same group [2,3]:
[1] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 115 (2015) 072001
[2] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 117 (2016) no.8, 082002
[3] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 117 (2016) no.8, 082003

As well as revealing the new $\boldsymbol{P}_{c}(\mathbf{4 3 1 2})$ (sigma?) state, the LHCb 2019 analysis also uncovered a more complex structure of $P_{c}(4450)$, consisting of two narrow nearby separate peaks, $P_{c}(4440)$ and P_{c} (4457) with the two-peak structure hypothesis having a statistical significance of 5.4 sigma with respect to the singlepeak strucłure hypothesis.

The masses and widths of the three
narrow pentaquark states are as follows

State	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7_{-0.6}^{+6.8}$	$9.8 \pm 2.7_{-4.5}^{+3.7}$
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3_{-4.7}^{+4.1}$	$20.6 \pm 4.9_{-10.1}^{+8.7}$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6_{-1.7}^{+4.1}$	$6.4 \pm 2.0_{-1.9}^{+5.7}$

[^0]
Why pentaquark states?

Number of events versus J/Psi p invariant mass [*]. The mass thresholds for the $\Sigma_{c} \bar{D}$ and $\Sigma_{c} \bar{D}^{*}$ final states are superimposed.

2021

$\triangleright P_{c}$ (unulc$\left.\overline{\mathbf{c}}\right), P_{c s}$ (udscē)
LHCb PRL115(2015)072001, PRL122(2019)222001, (2021) LHCb, arXiv: 2012.10380

New narrow $P_{c}(4312)^{+}$observed in 2019 at $\mathrm{LHCb}, P_{c}(4450)^{+}$is resolved to two states. (with 10 times statistics)

Significance of $P_{c s}^{0}(4459)$ exceeds 3σ after considering all the systematic uncertainties.

Mass of $P_{c s}(4459)^{0} 19 \mathrm{MeV}$ below the $\Xi_{c}^{0} \bar{D}^{* 0}$ threshold, similar to $P_{c}(4440)^{+}$and $P_{c}(4457)^{+}$pentaquark states.

2021

$\triangleright P_{c}$ (unulc$\left.\overline{\mathbf{c}}\right), P_{c s}$ (udscē)
LHCb PRL115(2015)072001, PRL122(2019)222001, (2021) LHCb, arXiv: 2012.10380

New narrow $P_{c}(4312)^{+}$observed in 2019 at $\mathrm{LHCb}, P_{c}(4450)^{+}$is resolved to two states. (with 10 times statistics)

Significance of $P_{c s}^{0}(4459)$ exceeds 3σ after considering all the systematic uncertainties.

Mass of $P_{c s}(4459)^{0} 19 \mathrm{MeV}$ below the $\Xi_{c}^{0} \bar{D}^{* 0}$ threshold, similar to $P_{c}(4440)^{+}$and $P_{c}(4457)^{+}$pentaquark states.

AUGUS $\dagger 2021$ Evidence for a new structure in the $J / \psi p$ and $J / \psi \bar{p}$ systems in $B_{s}^{0} \rightarrow J / \psi p \bar{p}$ decays

arXiv:2108.04720v1 [hep-ex] 10 Aug 2021

$$
\begin{aligned}
M_{P_{c}} & =4337{ }_{-4}^{+7}{ }_{-2}^{+2} \mathrm{MeV} \\
\Gamma_{P_{c}} & =29_{-12}^{+26}{ }_{-14}^{+14} \mathrm{MeV}
\end{aligned}
$$

The final signicance including systematic uncertainties is equal to 3.1 standard deviations

In this new analysis no evidence for the Pc(4312) is found

For pentaquarks

Nuclear
Forces
$\underset{\text { Forces }}{Q C D}$

Hadronic Molecule?
$\left(\bar{D} \Sigma_{\mathrm{c}}^{*}, \bar{D}^{*} \Sigma_{\mathrm{c}}, \ldots\right)$

Compact pentaquark

(5q)

Baryon-meson molecule with 5-quark core

JaJun Wu,R. Molina, E. Oset,B. S.Zou,PRC84(2011)015202 Predetti intorno ai 4 GeV mbut at leadt they had the idea

```
L. Maiani, D. Polosa and V.Riquer, Phys. Lett. Maiani, B 749 (2015) 298
E. Santopinto, A. Giachino, Phys. Rev. D96 (2017) 014014
```

Y. Yamaguchi, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi and M. Takizawa, Phys. Rev. D 96, no. 11, 114031 (2017).
Y. Yamaguchi, H. Garca-Tecocoatzi, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi and M. Takizawa, Phys. Rev. D 101 (2020) no.9, 091502

Compact $5 \boldsymbol{q}$ state?

E. Santopinto, A. Giachino, Phys. Rev. D96 (2017) 014014.

 P_{c} states by an algebraic model
5-quark configurations

Using only simmetry considerations, we have predicted the strange pentaquark with $\mathrm{I}=0 \operatorname{Pcs}(4457)$ for which LHCb reported evidence (R. Aaij et al. [LHCb], arXiv:2103.01803) and suggested to look for it in the $\Lambda \mathrm{J} / \Psi$ channel (in fact cited by LHCb). According to our model also $\mathrm{I}=1$ Pcs should exist (in the $\Sigma \mathrm{J} / \Psi$ channel) and $\mathrm{I}=1 / 2$ Pcss (in $\Xi \mathrm{J} / \Psi$ channel)

Compact $5 \boldsymbol{q}$ state?

We have predicted the strange pentaquark with $\mathrm{I}=0, P_{c s}^{0}$, for which LHCb reported evidence at $\mathrm{M}=4459 \mathrm{MeV}$ and suggested to look for it in the $\Lambda \mathrm{J} / \Psi$ channel (we have been cited by LHCb in arXiv:2012.10380). According to our model also $\mathrm{I}=1$ $P_{C S}$ should exist (in the $\Sigma \mathrm{J} / \Psi$ channel) and $\mathrm{I}=1 / 2 P_{C S S}$ (in $\Xi \mathrm{J} / \Psi$ channel).

$$
J^{P}=\frac{3^{-}}{2}
$$

from E. Santopinto and A. Giachino, Phys. Rev. D96 (2017) 014014.

Hadronic molecules?

- Exotics as Hadronic molecule \Rightarrow Hadron (quasi) bound state
\rightarrow expected near the thresholds

$$
\boldsymbol{\Sigma}_{c}^{(*)} \text { baryon }
$$

$$
\boldsymbol{P}_{\boldsymbol{c}}=\overline{\boldsymbol{D}}^{(*)} \boldsymbol{\Sigma}_{c}^{(*)} \text { molecules? }
$$

$$
\bar{D}^{*} \Sigma_{\mathrm{c}}(4463 \mathrm{MeV})
$$

\triangleright Q. Interactions?: Heavy hadron interactions are not established yet...
\Rightarrow Importance of π exchange is expected due to the heavy quark symmetry! S. Yasui and K. Sudoh, Phys. Rev. D 80 (2009), 034008
\Rightarrow Hadronic molecular structure is favored?

Model setup in this study

- Hadronic molecule + Compact state ($5 q$)
\Rightarrow Meson-Baryon couples to $5 q$ (Fashbach projection)
Meson-Baryon interactions

\triangleright Long range interaction: One pion exchange potential (OPEP)
\triangleright Short range interaction: $5 q$ potential

In Refis. [1], [2] we studied the hidden-charm pentaquarks by coupling the $\Lambda_{c} \bar{D}^{(*)}$ and Σ_{c}^{*} $\bar{D}^{(*)}$ meson-baryon channels to a uudc \bar{c} compact core with a meson-baryon binding interaction satisfying the heavy quark and chiral symmetries. This studies followed two previous investigations of the pentaquark states thought as purely uudc \bar{c} five quark states [3] and as meson-baryon molecules in a coupled channel approach [4]

The predicted pentaquark masses and widths are consistent with the new data by LHCb [*][**] with the following quantum number assignments:
$J^{P}\left(P_{c}(4337)\right)=\frac{1}{2}^{-}, J^{P}\left(P_{c}(4440)\right)=\frac{3}{2}^{-}$and $J^{P}\left(P_{c}(4457)\right)=\frac{1}{2}^{-}$.
[*] R. Aaij et al. (LHCb Collaboration) Phys. Rev. Lett. 122, 22200
[**] R. Aaij et al. (LHCb Collaboration) arXiv:2108.04720v1
[1] Y.Yamaguchi, H.Garcia-Tecocoatzi, A.Giachino, A.Hosaka, E.Santopinto, S.Takeuchi, M.Takizawa, Phys.Rev.D 101 (2020) 091502(R)
[2] Y.Yamaguchi, A.Giachino, A.Hosaka, E.Santopinto, S.Takeuchi, M.Takizawa, PRD 96 (2017) 114031(R) Phys.Rev. D96 (2017) 114031
[3] E. Santopinto and A. Giachino in Phys. Rev. D 96 , 014014 (2017)
[4] Y. Yamaguchi and E. Santopinto Phys.Rev.D 96 (2017) 1, 014018

results

Four-Heavy-Quark Tetraquarks

Observation claims of a 4muon peak in 2Υ spectrum circulated in 2018-2019

- A Genova-Roma collaboration set up to compute lifetime \& branching ratios for fully bottom 0^{++}tetraquark, also in view of the luminosity upgrade of LHCb;
- we also included the 2^{++}state (2^{++}has a production cross- section a factor 5 larger than 0^{++}and a larger $4 \mu \mathrm{Bf}$!)
.Becchi, A.Giachino, L.Maiani and E.Santopinto, Phys. Lett. B 806, 135495 (2020).
-Very discouraging results were obtained for the 4 muon channel of 4 b tetraquarks: $\sigma \sim 0.1 \mathrm{fb}$ or less, made the positive claims rather unlikely.
-In March 2020, we realised that fully charmed tetraquarks would be more favorable.
- Our paper on fully charmed tetraquarks appeared on ArXiv on June 25.

```
C.Becchi, J. Ferretti, A. Giachino, L.Maiani and E.Santopinto, arXiv:2006.14388,
Phys.Lett. B }811\mathrm{ (2020)135952
```


Tetraquark picture of $2 \mathrm{~J} / \Psi$ resonances

Describing the $X(6900)$ structure with a Breit Wigner lineshape, its mass and natural width are determined to be (arXiv:2006.16957, 30 Jun 2020, now Science Bulletin, Volume 65, Issue 23, 1983 (2020)):

$$
\begin{gathered}
m[X(6900)]=6905 \pm 11 \pm 7 \mathrm{MeV} / c^{2} \\
\Gamma[X(6900)]=80 \pm 19 \pm 33 \mathrm{MeV}
\end{gathered}
$$

Tetraquark constituent picture of $2 \mathrm{~J} / \Psi$

$$
[c c]_{(S=1)}\left[c^{-} c^{-}\right]_{(S=1)}
$$

- [cc] in color $\mathbf{3}^{-}$
- total spin of each diquark, $S=1$ (color antisymmetry and Fermi statistics)
- S-wave: positive parity

S-wave, fully charm tetraquarks

- $\mathrm{C}=+1$ states: $J^{P C}=0^{++}, 2^{++}$, decay in $2 \mathrm{~J} / \Psi$, S-wave - $\mathrm{C}=-1$ states: $J^{P C}=1^{+-}$, no decay in $2 \mathrm{~J} / \Psi$, S-wave masses computed as diquark antidiquark system by Bedolla, Ferretti, Roberts,Santopinto, arXiv:1911.00960, Eur.Phys.J.C80(2020)1004
${ }^{\bullet}$ QCD inspired potential (Coulomb+linear potential), h.o. variational method, the diquarks are treated as frozen .
- Authors include computation of the energy levels of radial and orbital excitations.

Jacobi coordinates in the tetraquark

Decays and branching fractions

-Decays take place via $c \bar{c}$ annihilation. The starting point is to bring the $c \bar{c}$ pairs together

$$
\begin{aligned}
\mathscr{T}\left(J=0^{++}\right)=\left|(c c)_{3}^{1}(\bar{c} \bar{c})_{3}^{1}\right\rangle_{1}^{0}= & -\frac{1}{2}\left(\sqrt{\frac{1}{3}}\left|(c \bar{c})_{1}^{1}\left(c \overline{c_{1}^{1}}\right\rangle_{1}^{1}\right\rangle_{1}^{0}-\sqrt{\frac{2}{3}}\left|(c \bar{c})_{8}^{1}(c \bar{c})_{8}^{1}\right\rangle_{1}^{0}\right)+ \\
& +\frac{\sqrt{3}}{2}\left(\sqrt{\frac{1}{3}}\left|(\bar{c})_{1}^{0}(c \bar{c})_{1}^{0}\right\rangle_{1}^{0}-\sqrt{\frac{2}{3}}\left|(c \bar{c})_{8}^{0}(c \bar{c})_{8}^{0}\right\rangle_{1}^{0}\right)
\end{aligned}
$$

- Four possible annihilations:

1 a color singlet pair of spin $1(0)$ annihilates into a $\mathrm{J} / \Psi^{\prime}\left(\eta_{\mathrm{c}}\right)$, the other pair rearranges into the available states (near threshold: J/ Ψ or $\eta \mathrm{c}$ again);
2 a color octet, spin 1 pair annihilates into a pair of light quark flavours, $\mathrm{q}=\mathrm{u}, \mathrm{d}, \mathrm{s}$ and the latter recombine with the spectator pair to produce a pair of lower-lying, open-charm mesons. A similar process from color octet spin 0 pair is higher order in as and neglected.

Rates are computed with the formula (well known in atomic physics):

$$
\nabla \Gamma=\left|\Psi_{T}(0)\right|^{2} \cdot|\mathbf{v}| \cdot \sigma\left(c c^{-} \rightarrow f\right)
$$

Branching fractions are independent from $\left|\Psi_{T}(0)\right|^{2}$
Total rates: see later.

$2 \mathrm{~J} / \Psi$ and 4μ cross sections

We give the upper bound: $\sigma_{\text {theo. }}(\mathcal{T} \rightarrow 4 \mu) \leq \sigma(p p \rightarrow 2 J / \Psi)[B(J / \Psi \rightarrow 2 \mu)]^{2}$
With: $\sigma(p p \rightarrow 2 J / \Psi) \simeq 15.2 \mathrm{nb}$ (LHCb @ 13 TeV , Aaij : 2016bqq)
The limiting cross sections (in fb) are shown in the table

$[c c][\bar{c} \bar{c}]$	Decay channel	$B F$ in \mathcal{T} decay	Cross section upper limit (fb)
$J=0^{++}$	$\mathcal{T} \rightarrow D^{(*)+} D^{(*)-} \rightarrow e+\mu+\ldots$	2.310^{-3}	$3.6 \cdot 10^{4}(36 \mathrm{pb})$
	$\mathcal{T} \rightarrow D^{(*) 0} \bar{D}^{(*) 0} \rightarrow e+\mu+\ldots$	0.3610^{-3}	$0.55 \cdot 10^{4}(6 \mathrm{pb})$
	$\mathcal{T} \rightarrow 4 \mu$	2.610^{-6}	39
$J=2^{++}$	$\mathcal{T} \rightarrow D^{*+} \bar{D}^{*-} \rightarrow e+\mu+\ldots$	7.010^{-3}	$53 \cdot 10^{4}(532 \mathrm{pb})$
	$\mathcal{T} \rightarrow D^{* 0} \bar{D}^{* 0} \rightarrow e+\mu+\ldots$	1.110^{-3}	$8.3 \cdot 10^{4}(83 \mathrm{pb})$
	$\mathcal{T} \rightarrow 4 \mu$	1.010^{-5}	780

$$
B_{4 \mu}\left(2^{++}\right): B_{4 \mu}\left(0^{++}\right) \sim 4: 1 ; \quad \sigma\left(2^{++}\right): \sigma\left(0^{++}\right)=5: 1 \quad \text { A visibility ratio 20:1!! }
$$

-Branching ratios in 4 muons are more favorable in 4 c than in 4 b tetraquarks

- Among 4 c , the Branching Ratio is more favorable for the 2^{++}(a factor 4)
- In addition 2^{++}is produced in pp collision with a statistical factor $2 \mathrm{~J}+1=5$

Total widths and mass spectrum

- Total widths are proportional to the ratio: $\quad \xi=\left|\Psi_{T}(0)\right|^{2} /\left|\Psi_{J \Psi \Psi}(0)\right|^{2}$
- we determine ξ from models

$$
\begin{gathered}
\xi=4.6 \pm 1.4 \\
\Gamma\left(0^{++}\right) \cong \Gamma\left(2^{++}\right)=(97 \pm 30) \mathrm{MeV}
\end{gathered}
$$

C.Becchi, J. Ferretti, A.Giachino, L.Maiani and E.Santopinto, arXiv:2006.14388, Phys.Lett. B 811 (2020) 135952

$$
16 \text { (Traquarks and pentaquarks) discovered by LHC from } 2011 \text { up to now! }
$$

Summary

- The field of exotics has been established both experimentally and theoretically as a hot topic
- Recognition that some really fundamental questions on how hadronic strucłures are created are still unanswered. Ongoing and near-future experiments are likely to provide enough information to answer them.

Thanks for your attention!

[^0]: [*] R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 222001 (2019).

