Exotic hadrons in heavy ion collisions

Luciano Melo Abreu

Instituto de Física Universidade Federal da Bahia - Brazil

XV Hadron Physics - September 2021

Aim

- A brief overview on the state-of-art of exotic states
- The exotics in a HIC: dependence on their interpretation
- Molecular, tetraquark and triangle singularities interpretations in HICs?

Case study of some of the most prominent exotic states

Aim

- A brief overview on the state-of-art of exotic states.
- The exotics in a HIC: dependence on their interpretation
- Molecular, tetraquark and triangle singularities interpretations in HICs?

Case study of some of the most prominent exotic states

- ullet Proliferation of new states in the car c, bar b and ccq sectors
- Properties do not match standard quark-model predictions
- Decay properties require > 3 valence quarks

Ex.1: Z's are manifestly 4-quark states (J/ψ) not produced from $|0\rangle$

$$Z_c^+(3900) \to J/\psi \pi^+$$

Ex.2: isospin violation (if $X(3872) \sim c\bar{c}$: decay highly suppressed)

$$X(3872) \to \rho^0 J/\psi \to \pi^+ \pi^- J/\psi$$

- 44 observed
- 17 confirmed with complete assignment by PDG
- Estimations: about a hundred to be discovered in near future

- ullet Proliferation of new states in the $car{c}, bar{b}$ and ccq sectors
- Properties do not match standard quark-model predictions
- Decay properties require > 3 valence quarks

Ex.1: Z's are manifestly 4-quark states (J/ψ) not produced from $|0\rangle$

$$Z_c^+(3900) \to J/\psi \pi^+$$

Ex.2: isospin violation (if $X(3872) \sim c\bar{c}$: decay highly suppressed)

$$X(3872) \rightarrow \rho^0 J/\psi \rightarrow \pi^+ \pi^- J/\psi$$

- 44 observed
- 17 confirmed with complete assignment by PDG
- Estimations: about a hundred to be discovered in near future

- Proliferation of new states in the $c\bar{c}, b\bar{b}$ and ccq sectors
- Properties do not match standard quark-model predictions
- Decay properties require > 3 valence quarks

Ex.1: Z's are manifestly 4-quark states $(J/\psi \text{ not produced from } |0\rangle)$

$$Z_c^+(3900) \to J/\psi \pi^+$$

Ex.2: isospin violation (if $X(3872) \sim c\bar{c}$: decay highly suppressed)

$$X(3872) \rightarrow \rho^0 J/\psi \rightarrow \pi^+ \pi^- J/\psi$$

- 44 observed
- 17 confirmed with complete assignment by PDG
- Estimations: about a hundred to be discovered in near future

- ullet Proliferation of new states in the car c, bar b and ccq sectors
- Properties do not match standard quark-model predictions
- Decay properties require > 3 valence quarks

Ex.1: Z's are manifestly 4-quark states $(J/\psi \text{ not produced from } |0\rangle)$

$$Z_c^+(3900)\to J/\psi\pi^+$$

Ex.2: isospin violation (if $X(3872) \sim c\bar{c}$: decay highly suppressed)

$$X(3872) \to \rho^0 J/\psi \to \pi^+ \pi^- J/\psi$$

- 44 observed
- 17 confirmed with complete assignment by PDG
- Estimations: about a hundred to be discovered in near future

Intepretations for composition and binding mechanisms?

Hadron Molecules

Hybrids

Glueballs

Tetraquarks

Kinematical effects (TS's)

(luciano.abreu@ufba.br)

The heavy exotics collection

Theoretical perspective

A compelling and unified understanding has not yet emerged

- No single theoretical framework explains all exotic candidates
- Candidates: different interpretations
- In some cases, properties (masses, decay widths) are well explained by different models or quantum-mechanical superposition of them
- Necessity of more observables to distinguish its internal structure
- Let us focus on some emblematic states

The heavy exotics collection

Theoretical perspective

A compelling and unified understanding has not yet emerged

- No single theoretical framework explains all exotic candidates
- Candidates: different interpretations
- In some cases, properties (masses, decay widths) are well explained by different models or quantum-mechanical superposition of them
- Necessity of more observables to distinguish its internal structure
- Let us focus on some emblematic states

The heavy exotics collection

Theoretical perspective

A compelling and unified understanding has not yet emerged

- No single theoretical framework explains all exotic candidates
- Candidates: different interpretations
- In some cases, properties (masses, decay widths) are well explained by different models or quantum-mechanical superposition of them
- Necessity of more observables to distinguish its internal structure
- Let us focus on some emblematic states

X(3872): features

X(3872) story

74 years ago

```
K-mesons discovered -- associated production – strangeness – SU(3) -- model

Dec. 1947 ← 16 years → Jan 1964
```

18 years ago

(Adapted from S. Olsen, SCGP Workshop on Exotic Hadrons and Flavor Physics, May 2018)

(luciano.abreu@ufba.br)

Recent dispute on Prompt production of X(3872)

Esposito et al., 2006.15044

Comover interaction model:

$$\tau \frac{N_{\mathcal{Q}}}{d\tau} = -\langle v\sigma \rangle_{\mathcal{Q}} \rho_c N_{\mathcal{Q}};$$

$$\begin{split} \langle v\sigma\rangle_{4q} \sim \pi r_{4q}^2 \simeq 11.6\,\mathrm{mb};\\ \langle v\sigma\rangle_{Mol} \sim \pi r_{Mol}^2 \simeq 1197\,\mathrm{mb} \end{split}$$

ullet Findings \Rightarrow tetraquark nature

Braaten et al., PRD (2021); 2012.13499

- $\langle v\sigma \rangle_{Mol}$: probability-weighted sum of $\langle v\sigma \rangle (\pi D^{(*)})$
- Insensitive to $E_b^{(X)}$
- $f_{out,Q}^{(prompt)}$: out of reach of comoving pions
- ullet Findings \Rightarrow molecular picture

Recent dispute on Prompt production of X(3872)

Esposito et al., 2006.15044

Comover interaction model:

$$\tau \frac{N_{\mathcal{Q}}}{d\tau} = -\langle v\sigma \rangle_{\mathcal{Q}} \rho_c N_{\mathcal{Q}};$$

$$\begin{split} \langle v\sigma\rangle_{4q} \sim \pi r_{4q}^2 \simeq 11.6\,\mathrm{mb};\\ \langle v\sigma\rangle_{Mol} \sim \pi r_{Mol}^2 \simeq 1197\,\mathrm{mb} \end{split}$$

 $\bullet \ \, \mathsf{Findings} \Rightarrow \mathsf{tetraquark} \,\, \mathsf{nature} \,\,$

Braaten et al., PRD (2021); 2012.13499

- $\langle v\sigma \rangle_{Mol}$: probability-weighted sum of $\langle v\sigma \rangle (\pi D^{(*)})$
- Insensitive to $E_b^{(X)}$
- $f_{out,Q}^{(prompt)}$: out of reach of comoving pions
- ullet Findings \Rightarrow molecular picture

Promising alternative: exotics in HICs

pp collisions

- Esposito et al., 2006.15044 \rightarrow Geometrical Cross sections: $\langle v\sigma\rangle_Q \sim \pi r_Q^2 (1-E_Q^{Thr}/E_\pi)^n$
- ullet Braaten et al., 2012.13499 o non-relativistic XEFT for $D^{(*)}\pi$

Relevance of hadronic medium interactions

Artoisenet and Braaten (PRD, 2011), Esposito et al. (JMP, 2013), Cho and Lee (PRD, 2013), LMA et al. (PRD, 2014), Guerrieri et al. (2014), ...

HICs

- End of the QGP phase: XYZ states interact with hadronic medium
- Absorption by comoving mesons or production from heavy mesons $(D^{(*)}\bar{D}^{(*)} \to X\pi, \rho, ...)$
- Properties and observables: depend on the interpretation

Promising alternative: exotics in HICs

pp collisions

- Esposito et al., 2006.15044 \rightarrow Geometrical Cross sections: $\langle v\sigma\rangle_Q \sim \pi r_Q^2 (1-E_Q^{Thr}/E_\pi)^n$
- ullet Braaten et al., 2012.13499 o non-relativistic XEFT for $D^{(*)}\pi$

Relevance of hadronic medium interactions

Artoisenet and Braaten (PRD, 2011), Esposito et al. (JMP, 2013), Cho and Lee (PRD, 2013), LMA et al. (PRD, 2014), Guerrieri et al. (2014), ...

HICs

- End of the QGP phase: XYZ states interact with hadronic medium
- Absorption by comoving mesons or production from heavy mesons $(D^{(*)}\bar{D}^{(*)} \to X\pi, \rho, ...)$
- Properties and observables: depend on the interpretation

Breaking news: first evidence for X(3872) in HICs!

CMS-LHC, arXiv:2102.13048

• Prompt X(3872)-production in PbPb collisions, $\sqrt{s} = 5.02$ TeV

$$X(3872)$$
 \rightarrow $J/\psi \pi^+ \pi^-$
 \rightarrow $\mu^+ \mu^- \pi^+ \pi^-$

$\rho^{(PbPb)} \simeq 10 \, \rho^{(pp)}$

Unique experimental input of the X(3872) production mechanism and its nature

Breaking news: first evidence for X(3872) in HICs!

CMS-LHC, arXiv:2102.13048

• Prompt X(3872)-production in PbPb collisions, $\sqrt{s} = 5.02$ TeV

$$X$$
(3872) \rightarrow $J/\psi \pi^+ \pi^-$
 \rightarrow $\mu^+ \mu^- \pi^+ \pi^-$

$$ho^{(PbPb)} = rac{N_{X(3872)}}{N_{\psi(25)}} = 1.08 \pm 0.9 \pm 0.52$$

$$\rho^{(PbPb)} \simeq 10 \, \rho^{(pp)}$$

Unique experimental input of the X(3872) production mechanism and its nature

Our contributions: LMA, Kamchandani, Nielsen, Navarra, Torres [PRD, PLB, ... (2014-2019)]

Hadronic effects on $N_{X(3872)}(\tau)$

- Use of Eff. Lagrangians based on relevant symmetries
- Inclusion of $g_{XD^{\pm}D^{*\mp}}$
- Anomalous: $\mathcal{L}_{\pi D^* \bar{D}^*}$, $\mathcal{L}_{XD^* \bar{D}^*}$
- Internal structure: coalescence

Bjorken picture - Rate equation:

$$\begin{array}{ll} \frac{dN_X(\tau)}{d\tau} & = & \sum_{\varphi} \left[\langle \sigma_{\bar{M}M' \to \varphi X} v_{\bar{M}M'} \rangle n_{\bar{M}}(\tau) N_{M'}(\tau) \\ \\ & - \langle \sigma_{\varphi X \to \bar{M}M'} v_{\varphi X} \rangle n_{\varphi}(\tau) N_X(\tau) \right]. \end{array}$$

 $N_{X(3872)}^{(4q)}$ reduced by a factor of 4

Exotic states with I=1

state	mass MeV	width MeV	QQ decay mode	phase space MeV	nearby threshold	ΔE MeV
X(3872) $Z_b(10610)$ $Z_b(10650)$ $Z_c(3900)$ $Z_c(4020)$ ×	3872 10608 10651 3900 4020	< 1.2 21 10 24 - 46 8 - 25	$J/\psi \pi^+\pi^ \Upsilon \pi$ $\Upsilon \pi$ $J/\psi \pi$ $J/\psi \pi$	495 1008 1051 663 783	ŪD* BB* B*B* ŪD* Ū*D* ŪD BB	< 1 2 ± 2 2 ± 2 24 6
1078	50					
1076 1066 N 1066 1056	50	X _b ² ∘ -X _b I=0	T	0650)	B*I BB	
410 400 New 400 390	50 - 00 X	(4014)	Z _c (402	•	D*I)*
390 386		(3872)	Z _c ⁺ (3	900)	DD	•
380	00 - 0	bserve	d opr	edict	ed	

$$Z_c^{\pm,0}(3900)$$
, $Z_c^{\pm,0}(4020)$

•
$$(D\bar{D}^*)^{\pm,0}, (D^*\bar{D}^*)^{\pm,0}$$

$$Z_b^{\pm,0}(10610), Z_b^{\pm,0}(10650)$$

•
$$(B\bar{B}^*)^{\pm,0}, (B^*\bar{B}^*)^{\pm,0}$$

- $I(J^{P(C)}) = 1(1^{+(-)})$
- CHARGED: no confusion with quarkonia $Q\bar{Q}$ states!
- The only clear "spectroscopy" so far

Exotic states with I=1

state	mass MeV	width MeV	QQ decay mode	phase space MeV		arby shold	ΔE MeV
X(3872) $Z_b(10610)$ $Z_b(10650)$ $Z_c(3900)$ $Z_c(4020)$ \times \times	3872 10608 10651 3900 4020	< 1.2 21 10 24 - 46 8 - 25	$J/\psi \pi^+\pi^ \Upsilon \pi$ $\Upsilon \pi$ $J/\psi \pi$ $J/\psi \pi$	495 1008 1051 663 783	Ē Ē* Ē	D* B* B* D* D* D* D*	< 1 2 ± 2 2 ± 2 24 6
107	50						
1076 1066 N W 1066 1056	50	X _b ² o -X _b The second	Z _b ⁺ (10	0650)		B*B BB*	*
410 400 No 400 390	50 - 00 X((4014)	Z _c (402	• 0/402	:6)	⊡*D	*
39	00	(3872)	Z _c ⁺ (3) 3900)		DD*	
38	00	bserve	d opr	edict			

$Z_c^{\pm,0}$ (3900), $Z_c^{\pm,0}$ (4020)

• $(D\bar{D}^*)^{\pm,0}, (D^*\bar{D}^*)^{\pm,0}$

$$Z_b^{\pm,0}(10610), Z_b^{\pm,0}(10650)$$

•
$$(B\bar{B}^*)^{\pm,0}, (B^*\bar{B}^*)^{\pm,0}$$

- $I(J^{P(C)}) = 1(1^{+(-)})$
- CHARGED: no confusion with quarkonia $Q\bar{Q}$ states!
- The only clear "spectroscopy" so far

Bottomonium sector: $Z_b(10610)$ and $Z_b'(10650)$

LMA, Kamchandani, Torres, Nielsen, Navarra, Vasconcellos; (PRD, 2017; EPJ C, 2018, ...)

- $N_{Z_{b}^{(\prime)}}(au)$ in HIC environment
- Rate equation (Bjorken picture): absorption and regeneration effects in hadron gas phase
- Inclusion of the coupling:

$$Z_b^+(B^+\bar{B}^{*0}+\bar{B}^0B^{*+})$$

Inclusion of the term $-\Gamma_{Z_b}N_{Z_b}(au)$ $(\Gamma_{Z_b}\approx 20~{
m MeV})$

Bottomonium sector: $Z_b(10610)$ and $Z_b'(10650)$

LMA, Kamchandani, Torres, Nielsen, Navarra, Vasconcellos; (PRD, 2017; EPJ C, 2018, ...)

- $N_{Z_b^{(\prime)}}(au)$ in HIC environment
- Rate equation (Bjorken picture): absorption and regeneration effects in hadron gas phase
- Inclusion of the coupling:

$$Z_b^+(B^+\bar{B}^{*0}+\bar{B}^0B^{*+})$$

• Inclusion of the term $-\Gamma_{Z_b}N_{Z_b}(\tau)$ $(\Gamma_{Z_b}\approx 20 \text{ MeV})$

Time evolution of the $Z_b(10610)^{\pm,0}$ abundance

LMA, Kamchandani, Torres, Nilsen, Navarra, Vasconcellos; (PRD, 2017; EPJ C, 2018, ...)

- Suppression by a factor two of the final yield
- Smaller suppression that than the one found for X(3872)
- Role played by the medium: "filtering" of the particles produced at the end of QGP

LHC (
$$\sqrt{s_{NN}} = 2.76 \text{ TeV}$$
)

(Dark and light shaded bands: statistical and coalescence models (PRD, 2017; EPJ C, 2018,

Time evolution of the $Z_b(10610)^{\pm,0}$ abundance

LMA, Kamchandani, Torres, Nilsen, Navarra, Vasconcellos; (PRD, 2017; EPJ C, 2018, ...)

- Suppression by a factor two of the final yield
- Smaller suppression that than the one found for X(3872)
- Role played by the medium: "filtering" of the particles produced at the end of QGP

LHC (
$$\sqrt{s_{NN}}=2.76$$
 TeV)

(Dark and light shaded bands: statistical and 4 coalescence models (PRD, 2017; EPJ C, 2018,

$X_J(2900)$: first fully open-charm exotic hadrons

LHCb, PRL 125, 242001 (2020)

• Invariant mass spectrum of the $B^+ \to D^+ D^- K^+$ decay:

$$0^+: M = 2866 \text{MeV}, \Gamma = 57 \text{MeV}$$

 $1^-: M = 2904 \text{MeV}, \Gamma = 110 \text{MeV}$

Minimum valence quark contents: c̄sud

First observed unconventional hadrons which are fully open charm tetraquarks

- HIC: how they are affected by the medium during the expansion?
- Possible interpretations?
- Hadronic molecular states
 (J = 0 as a S-wave and J = 1 as a P-wave)?
- Tetraquark states?

$X_J(2900)$: first fully open-charm exotic hadrons

LHCb, PRL **125**, 242001 (2020)

• Invariant mass spectrum of the $B^+ \to D^+ D^- K^+$ decay:

$$0^+: M = 2866 \text{MeV}, \Gamma = 57 \text{MeV}$$

 $1^-: M = 2904 \text{MeV}, \Gamma = 110 \text{MeV}$

Minimum valence quark contents: c̄sud

First observed unconventional hadrons which are fully open charm tetraquarks

- HIC: how they are affected by the medium during the expansion?
- Possible interpretations?
- Hadronic molecular states
 (J = 0 as a S-wave and J = 1
 as a P-wave)?
- Tetraquark states?

$X_J(2900)$: hadronic interactions in HICs

LMA, PRD103, 036013(2021)

• Analysis of the processes: $X_J\pi \leftrightarrow \bar{D}^*K, K^*\bar{D}$

(b)

X_J(2900): Time evolution [LMA, PRD**103**, 036013(2021)]

- 4q coal.: initial yields $(\tau \sim \tau_C)$
- Hadron coal.: at $au \sim au_F$

State	$N_{X_J}^{0(Stat)}(au_H)$	$N_{X_J}^{0(4q)}(\tau_C)$	$N_{X_J}^{(Mol)}(au_F)$
J = 0, I = 0	6.9×10^{-3}	1.3×10^{-3}	4.5×10^{-4}
J = 0, I = 1	2.1×10^{-2}	3.9×10^{-3}	1.36×10^{-3}
J = 1, I = 0	1.7×10^{-2}	9.0×10^{-4}	7.2×10^{-3}
J = 1, I = 1	5.0×10^{-2}	2.7×10^{-3}	2.2×10^{-2}

At $au \sim au_{\it F}$:

- J = 0: $N_{X_0}^{(4q)} \approx 4N_{X_0}^{(Mol)}$
- J = 1: $N_{X_1}^{(Mol)} \approx 2.5 N_{X_1}^{(4q)}$
- HICs: might shed some light on the discrimination of their structure

$X_J(2900)$: Time evolution [LMA, PRD**103**, 036013(2021)]

- 4q coal.: initial yields $(\tau \sim \tau_C)$
- Hadron coal.: at $\tau \sim \tau_F$

State	$N_{X_J}^{0(Stat)}(au_H)$	$N_{X_J}^{0(4q)}(au_C)$	$N_{X_J}^{(Mol)}(au_F)$
J = 0, I = 0	6.9×10^{-3}	1.3×10^{-3}	4.5×10^{-4}
J = 0, I = 1	2.1×10^{-2}	3.9×10^{-3}	1.36×10^{-3}
J = 1, I = 0	1.7×10^{-2}	9.0×10^{-4}	7.2×10^{-3}
J = 1, I = 1	5.0×10^{-2}	2.7×10^{-3}	2.2×10^{-2}

At $\tau \sim \tau_F$:

• J = 0: $N_{X_0}^{(4q)} \approx 4N_{X_0}^{(Mol)}$

• J = 1: $N_{X_1}^{(Mol)} \approx 2.5 N_{X_1}^{(4q)}$

 HICs: might shed some light on the discrimination of their structure

$Z_c(3900)$: triangle singularity or a new hadron?

Belle/BESIII PRL **110** (2013), 252002; 252001

$$Y(4260) \rightarrow Z_c \pi^{\mp} \rightarrow J/\psi \pi^{\pm} \pi^{\mp}$$

Guo, NPR 37 (2020), 406

 Possible kinematic accident of the (D₁*DD*) triangle satisfying the Coleman-Norton theorem

Triangle integral: singular when Coleman-Norton theorem applies

- All particles need to be on-shell
- All particles collinear
- Classically allowed: 3 can reach 2

$$t=t_0 \qquad \frac{1}{2}$$

$$t=t_1 \qquad \frac{B}{3} \qquad \frac{2}{2}$$

$$t=t_f \qquad \frac{B}{3} \qquad \frac{2}{3}$$

(luciano.abreu@ufba.br)

$Z_c(3900)$: triangle singularity or a new hadron?

Belle/BESIII PRL 110 (2013), 252002; 252001

$$Y(4260) \rightarrow Z_c \pi^{\mp} \rightarrow J/\psi \pi^{\pm} \pi^{\mp}$$

Guo, NPR 37 (2020), 406

 Possible kinematic accident of the $(D_1^*DD^*)$ triangle satisfying the Coleman-Norton theorem

Triangle integral: singular when Coleman-Norton theorem applies

- All particles need to be on-shell
- All particles collinear
- Classically allowed: 3 can reach

$$t=t_0 \qquad \frac{1}{2}$$

$$t=t_1 \qquad \frac{B}{3} \qquad \frac{2}{2}$$

$$t=t_f \qquad \frac{B}{3} \qquad \frac{2}{C}$$

(luciano.abreu@ufba.br)

LMA and Llanes-Estrada, EPJ C **81**, 430 (2021); 2109.01015 [hep-ph] (to appear)

(Guo, NPR 37 (2020), 406)

Can HICs help discern the correct interpretation? Two conditions

- Sufficient time to complete in a HIC
- Mass and/or width are modified from their vacuum values

LMA and Llanes-Estrada, EPJ C **81**, 430 (2021); 2109.01015 [hep-ph] (to appear)

(Guo, NPR 37 (2020), 406)

Can HICs help discern the correct interpretation? Two conditions

- Sufficient time to complete in a HIC
- Mass and/or width are modified from their vacuum values

$Z_c(3900)$ as a TS in HICs; LMA and Llanes-Estrada, EPJ C **81**, 430 (2021); 2109.01015 [hep-ph] (to appear)

- Triangle loop: two requirements satisfied
- Calculations with thermal Matsubara formalism
- Use of Thermal M and Γ

- Singularity disappears at temperatures just below T_H
- HIC: helps discern if $Z_c(3900)$ is an intrinsic state
- Medium: a spectroscopic filter and help distinguish actual hadrons from singularities

$Z_c(3900)$ as a TS in HICs; LMA and Llanes-Estrada, EPJ C **81**, 430 (2021); 2109.01015 [hep-ph] (to appear)

- Triangle loop: two requirements satisfied
- Calculations with thermal Matsubara formalism
- Use of Thermal M and Γ

- ullet Singularity disappears at temperatures just below T_H
- HIC: helps discern if $Z_c(3900)$ is an intrinsic state
- Medium: a spectroscopic filter and help distinguish actual hadrons from singularities

- Hadron Spectrum: richer than what we expected
- New particle zoo above $D^{(*)}\bar{D}^*, B^{(*)}\bar{B}^*$ thresholds: not $(\bar{q}q, qqq)$

- It remains a great challenge!!!
- More experimental and theoretical investigations are necessary to shed
- HICs: promising testing ground for their structure

- Hadron Spectrum: richer than what we expected
- New particle zoo above $D^{(*)}\bar{D}^*, B^{(*)}\bar{B}^*$ thresholds: not $(\bar{q}q, qqq)$

- It remains a great challenge!!!
- More experimental and theoretical investigations are necessary to shed
- HICs: promising testing ground for their structure

- Hadron Spectrum: richer than what we expected
- New particle zoo above $D^{(*)}\bar{D}^*$, $B^{(*)}\bar{B}^*$ thresholds: not $(\bar{q}q,qqq)$

General description of exotic states?

- It remains a great challenge!!!
- More experimental and theoretical investigations are necessary to shed light into their dynamics
- HICs: promising testing ground for their structure

23 / 23

- Hadron Spectrum: richer than what we expected
- New particle zoo above $D^{(*)}\bar{D}^*$, $B^{(*)}\bar{B}^*$ thresholds: not $(\bar{q}q,qqq)$

General description of exotic states?

- It remains a great challenge!!!
- More experimental and theoretical investigations are necessary to shed light into their dynamics
- HICs: promising testing ground for their structure

Thank You!!!

Partial financial support:

