

# Presentation of the CC-IN2P3

GDR Neutrino meeting – Bordeaux – October, 30 2019





- The CC-IN2P3
  - Quick overview of the CC-IN2P3
- Services catalog
  - Computing
  - Storage
  - Collaborative tools
- Some (probably) more interesting tools
  - CVMFS, Dirac, GitLab, GPU, Singularity
- Useful links



#### Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules



# CC-IN2P3



GDR Neutrino 2019



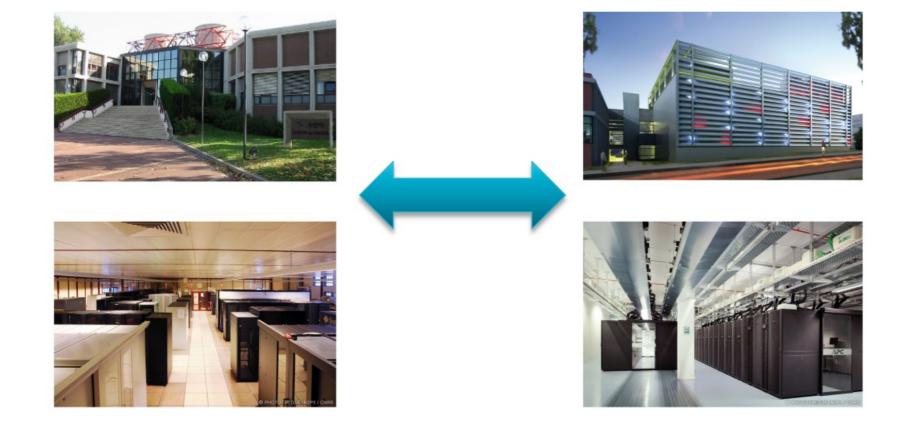
#### CC-IN2P3

Centre de Calcul de l'IN2P3 / CNRS Established in Villeurbanne since 1986



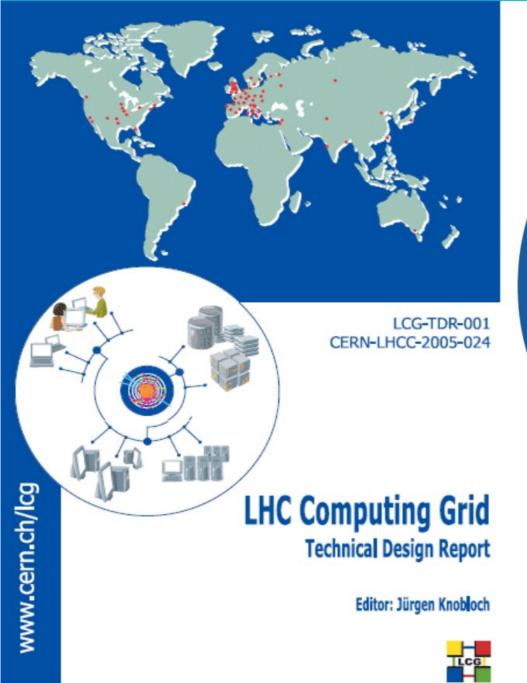
- Missions
  - Mass storage and computing infrastructure
  - Network and connectivity
  - Common and collaborative services (electronic mail, electronic document management, software versioning system, projects management, etc.)

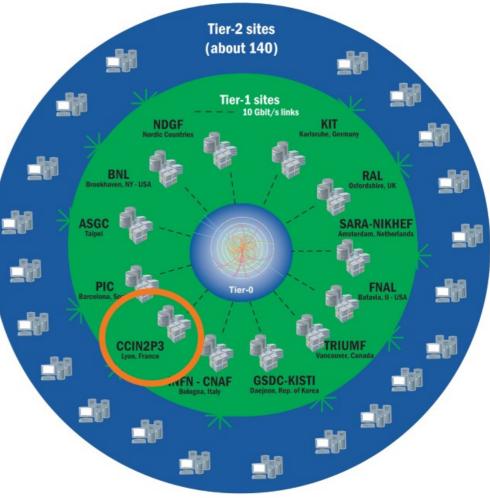
# Staff


84 people (engineers, technicians, administration and researchers)



2 computer rooms, 850 m<sup>2</sup> each


## #VIL1 (1986)


# #VIL2 (2011)



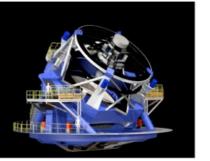


#### **Worldwide LHC Computing Grid - Tier 1**





Offering resources for the 4 LHC experiments Alice, Atlas, CMS and LHCb.




#### Also working for...

#### LSST

Whole dataset available at CC-IN2P3

50% of the processing by CC-IN2P3 other 50% by NCSA



#### EUCLID

CC-IN2P3 is the French Data Center for processing and data management



dark energy and dark matter

CC-IN2P3 should play a key role in the CTA data processing









# **Services Catalog**

- Computing
- Storage
- collaborative tools





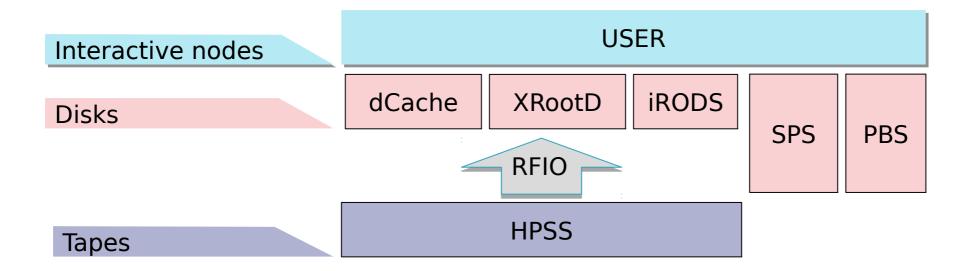
- High Throughput Computing farm
  - Single and multicore jobs (mostly 8 cores jobs)
  - ~40000 slots, with RAM 3 GB/slot
- High Performance Computing farm
  - Dedicated for OpenMP / MPI jobs
  - 512 cores, RAM 2048 GB
    - InfiniBand interconnect
- GPGPU
  - 40 GPU Nvidia Tesla K80 with 12 GB
    - InfiniBand interconnect
  - 24 GPU Nvidia Tesla V100 with 32 GB



- Univa Grid Engine as batch scheduler system
  - Submit jobs to all three clusters HTC, HPC and GPU
  - Worker nodes are running CentOS7 (RedHat7 like)
  - <u>Singularity</u> (container tool) allows to run a job in a different environment (OS, and/or softwares)
    - See later for more details
- Depending on what job you want to run
  - Select the most suitable cluster
  - Select the right batch queue depending on your job profile (CPU time required, memory, ...)
- Documentation :

https://doc.cc.in2p3.fr/utiliser\_le\_systeme\_batch\_ge\_depuis\_le\_centre\_de\_calcul




- UGE is a scheduler batch system
  - Orders by priority all tasks then submits them on the computing cluster
- What is a queue ?
  - A queue is a set of global properties and limits
    - Limits: CPU time, memory (virtual and/or resident), scratch disk, ...
  - Several queues are availables, with various limits
    - Check them to find the most appropriate one
- Priority mostly depends on the <u>fairshare</u>
  - Quota of computing resources reserved to you
    - Since the quota is not reached, UGE will submit your jobs asap
  - Quota are discussed every end of year between groups and CC-IN2P3



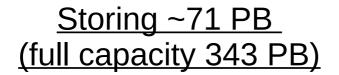
### http://cctools.in2p3.fr/mrtguser/info\_sge\_queue.php

| Queue name         | Host list              | Access list<br>(if restricted) | Max CPU time<br>(hh:mm:ss) | Max elapse time<br>(hh:mm:ss) | Max virtual<br>memory | Max resident<br>memory | Max file size | Slots used | Available slots | Used/available |
|--------------------|------------------------|--------------------------------|----------------------------|-------------------------------|-----------------------|------------------------|---------------|------------|-----------------|----------------|
| admin              | @multicores @multiseqs | admins                         | 03:00:00                   | 30:00:00                      | 16G                   | 1G                     | 5G            | 0          | 809             | 0.0 %          |
| admin_test         | @multicores @multiseqs | admins                         | 00:05:00                   | 01:00:00                      | 16G                   | 500M                   | 5G            | 0          | 809             | 0.0 %          |
| demon              | @multiseqs             | demonqueue                     | 29:00:00                   | INFINITY                      | 16G                   | 2G                     | 2G            | 8          | 1207            | 0.7 %          |
| huge               | @multiseqs             | hugequeue                      | 72:00:00                   | 86:00:00                      | 32G                   | 10G                    | 110G          | 1396       | 10525           | 13.3 %         |
| interactive        | @interacts             |                                | 36:00:00                   | 36:00:00                      | 16G                   | 3G                     | 500G          | 3          | 72              | 4.2 %          |
| long               | @multiseqs             |                                | 48:00:00                   | 58:00:00                      | 16G                   | 4G                     | 30G           | 10199      | 34491           | 29.6 %         |
| longlasting        | @multiseqs             | longlastingqueue               | 168:00:00                  | 192:00:00                     | 16G                   | 4G                     | 30G           | 204        | 3947            | 5.2 %          |
| mc_gpu_interactive | @interactsgpu          | gpuqueue                       | 36:00:00                   | 36:00:00                      | INFINITY              | 16G                    | 250G          | 4          | 16              | 25.0 %         |
| mc_gpu_long        | @gpu                   | gpuqueue                       | 48:00:00                   | 56:00:00                      | INFINITY              | 16G                    | 30G           | 36         | 144             | 25.0 %         |
| mc_gpu_longlasting | @gpu                   | longlastinggpuqueue            | 202:00:00                  | 226:00:00                     | INFINITY              | 16G                    | 30G           | 8          | 72              | 11.1 %         |
| mc_gpu_medium      | @gpu                   | gpuqueue                       | 05:00:00                   | 12:00:00                      | INFINITY              | 16G                    | 30G           | 0          | 144             | 0.0 %          |
| mc_highmem_huge    | @highmem               | mchighmemoryqueue              | 144:00:00                  | 150:00:00                     | 2000G                 | 500G                   | 1000G         | 0          | 3               | 0.0 %          |
| mc_highmem_long    | @highmem               | mchighmemoryqueue              | 72:00:00                   | 72:00:00                      | 2000G                 | 40G                    | 1000G         | 0          | 40              | 0.0 %          |
| mc_huge            | @multicores @multiseqs | mchugequeue                    | 72:00:00                   | 86:00:00                      | 32G                   | 8G                     | 30G           | 1480       | 9312            | 15.9 %         |
| mc_interactive     | @interacts             |                                | 36:00:00                   | 36:00:00                      | 16G                   | 3G                     | 500G          | 27         | 96              | 28.1 %         |
| mc_long            | @multicores @multiseqs | mcqueue                        | 48:00:00                   | 58:00:00                      | 16G                   | 3.6G                   | 30G           | 18396      | 34584           | 53.2 %         |
| mc_longlasting     | @multicores @multiseqs | mclonglastingqueue             | 202:00:00                  | 226:00:00                     | 16G                   | 3G                     | 30G           | 576        | 20284           | 2.8 %          |
| pa_gpu_long        | @gpu                   | pagpuqueue                     | 48:00:00                   | 56:00:00                      | INFINITY              | 16G                    | 30G           | 0          | 144             | 0.0 %          |
| pa_long            | @parallels             | paqueue                        | 48:00:00                   | 58:00:00                      | 16G                   | 3G                     | 30G           | 32         | 512             | 6.3 %          |
| pa_longlasting     | @parallels             | palonglastingqueue             | 168:00:00                  | 192:00:00                     | 16G                   | 3G                     | 30G           | 352        | 512             | 68.8 %         |
| pa_medium          | @parallels             | paqueue                        | 05:00:00                   | 12:00:00                      | 16G                   | 3G                     | 30G           | 0          | 512             | 0.0 %          |

- Various storage available
  - Various use-cases (what do you want to do?)
  - different 'Service Level Agreement' (backed-up or fail-over)
  - Some allow to back up directly into tapes






- PBS : Permanent Backed up Storage
  - Snapshot every 12 hours, backup on tape every 24 hours
  - \$HOME (20G personal space)
  - \$THRONG (100G shared space within the group)
- SPS: Semi-Permanent Storage
  - High throughput file system for working data
  - NO backup, NO snapshot
  - Space quota varies depending on the group resources request



- iRods : integrated Rule-oriented data system
  - High level overview (user interface)
  - Management of metadata (search feature)
  - Rules for data life cycle (data management policy)
  - Sites federation
  - Migration to tape
- XRootD
  - Performant access to data
  - Large disk cache (5 PiB)
  - Local copy or remote access
  - High scalability
  - Migration to tape

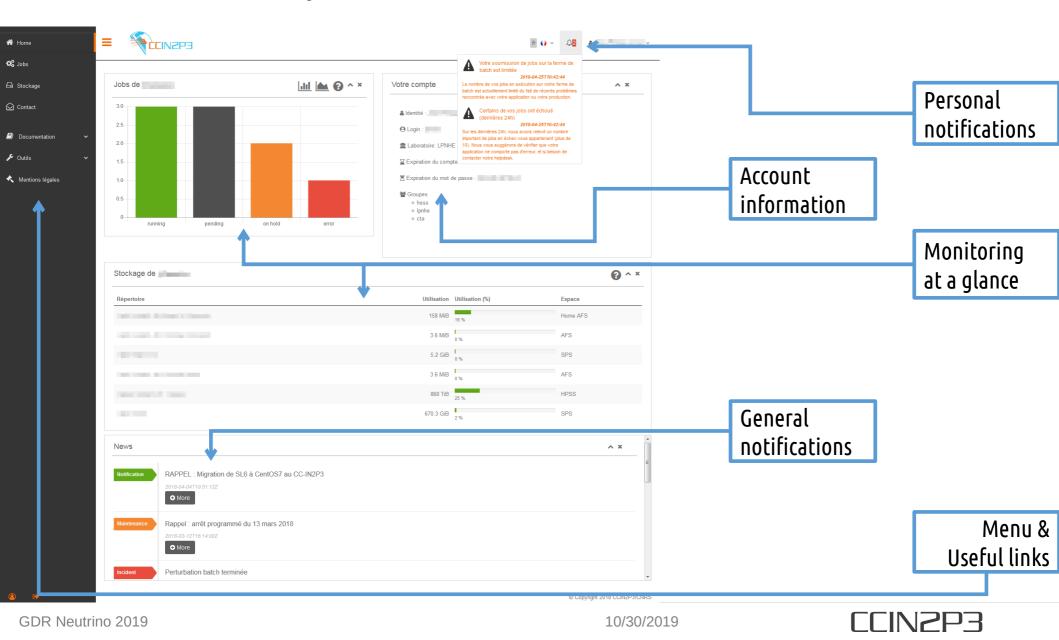


- HPSS: High Performance Storage System
  - Magnetic tape storage
  - NOT an archive (single copy only, no life cycle management)
  - Scientific data only
    - Raw data
    - Long term usage
  - Suitable for files > 1GB








#### https://doc.cc.in2p3.fr/en:stockage-et-transfert

| Where is the Data<br><u>before</u> the job? | File type / format    | Access                                | Files / dataset types<br>shared concurrently<br>by jobs | Recommended<br>dataset size |  |
|---------------------------------------------|-----------------------|---------------------------------------|---------------------------------------------------------|-----------------------------|--|
|                                             | Any / ROOT (data)     | read AND write                        |                                                         | > 10MiB                     |  |
| dCache                                      |                       | non posix (dCap, ROOT,<br>local copy) | read                                                    |                             |  |
| HPSS                                        | Any (data)            | read OR write                         | read                                                    | > 1GiB                      |  |
| пгээ                                        | Ally (uala)           | non posix (local copy)                | reau                                                    |                             |  |
| iRODS                                       | Any (data)            | read OR write                         | read                                                    | Any                         |  |
| INODS                                       |                       | non posix (local copy)                | Teau                                                    |                             |  |
| SPS                                         | Any + binaries + logs | read AND write                        | read AND write                                          | $\leq$ 8GiB : direct access |  |
| 5F5                                         |                       | posix OR local copy                   | Tedu AND WITE                                           | > 8GiB : local copy         |  |
|                                             | ROOT (any)            | read (non posix)                      |                                                         | Any                         |  |
| XRootD                                      |                       | write (ALICE) (ROOT,<br>local copy)   | read                                                    |                             |  |

### Ask us: https://cc-usersupport.in2p3.fr

#### **User portal**

- Provides some batch accounting and storage monitoring
- Access with your CCA credential





# Some (more ?) interesting tools



GDR Neutrino 2019



- Events management
  - Indico https://indico.in2p3.fr
- Documents management :
  - Atrium https://atrium.in2p3.fr
- Projects management
  - Forge https://forge.in2p3.fr
- Version control
  - GitLab https://gitlab.in2p3.fr



### • Git / GitLab

- One of the most powerful distributed control versions system
- GitLab provides a user-friendly interface to do almost everything one can do with Git
- Collaborative work thanks to the 'issues' which allow to track who needs to do what
- GitLab CI (CI : continous integration)
  - Can automate lots of things :
    - Building container
    - Unitary tests for code
    - Nightly builds for software...

## https://gitlab.in2p3.fr/help



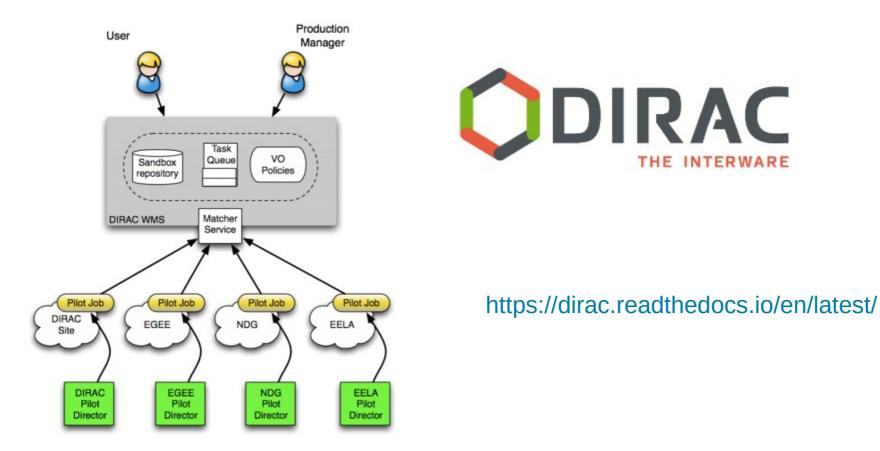
#### Git / GitLab / Cl

.

#### Job #100156 triggered 3 weeks ago by 🌑 Sébastien GADRAT O passed

D 0 i ₹

Running with gitlab-runner 12.3.0 (a8a019e0) on ccosvms0239@gitlab.in2p3.fr 96238d4c Using Docker executor with image python:2.7-stretch ... Pulling docker image python:2.7-stretch ... Using docker image sha256:f764be8f15de134ad9abf1c8664da1b958e7b67aa3ab670bfe487b8e66d5b007 for python:2.7-stretch ... Running on runner-96238d4c-project-5165-concurrent-0 via ccosvms0239... Fetching changes... Reinitialized existing Git repository in /builds/sgadrat/c3/.git/ Checking out b68ece72 as master... Skipping Git submodules setup Downloading artifacts for export\_to\_pdf (100155)... Downloading artifacts from coordinator... ok id=100155 responseStatus=200 OK token=k2yxFoWF ▼ \$ python -V Python 2.7.16 \$ apt-get update Ign:1 http://deb.debian.org/debian stretch InRelease Get:2 http://security.debian.org/debian-security stretch/updates InRelease [94.3 kB] Get:3 http://deb.debian.org/debian stretch-updates InRelease [91.0 kB] Get:4 http://deb.debian.org/debian stretch Release [118 kB] Get:5 http://deb.debian.org/debian stretch Release.gpg [2365 B] Get:6 http://security.debian.org/debian-security stretch/updates/main amd64 Packages [499 kB] Get:7 http://deb.debian.org/debian stretch-updates/main amd64 Packages [27.4 kB] Get:8 http://deb.debian.org/debian stretch/main amd64 Packages [7086 kB] Fetched 7918 kB in 1s (4034 kB/s) Reading package lists... \$ mkdir .public \$ cp -r \* .public \$ mv .public public Uploading artifacts... public: found 112 matching files Uploading artifacts to coordinator... ok id=100156 responseStatus=201 Created token=c6wasX9c Job succeeded 10/30/2019 GDR Neutrino 2019

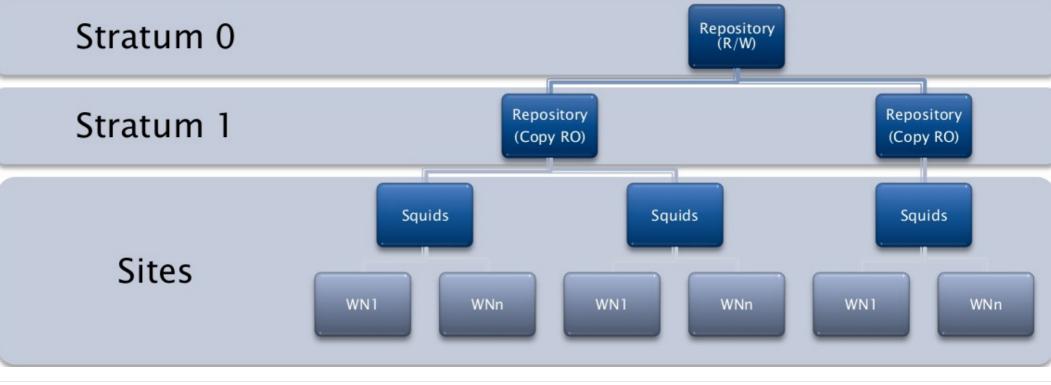



- Cloud OpenStack
  - https://doc.cc.in2p3.fr/le\_cloud\_openstack\_du\_ccin2p3
  - Allows to spawn dedicated virtual machines on demand
  - The user fully manages his VMs
- Singularity (on the computing farm)
  - Allows to run a job in a specific and dedicated environment
    - Different from the default worker nodes environment

```
$ cat /etc/redhat-release
CentOS Linux release 7.7.1908 (Core)
$ singularity exec hello-world latest.sif cat /etc/issue
Ubuntu 14.04.6 LTS
$ singularity exec hello-world latest.sif ls /
                                                singularity
anaconda-post.log etc
                      lib64
                                    mnt root
                                                            tmp
bin
          home lost+found
                            opt
                                  run
                                        srv
                                                     usr
          lib
dev
                media
                            proc
                                  sbin sys
                                                     var
```



- provides high user jobs efficiency
  - hiding the heterogeneity of the the underlying computing resources (federate various sites).
- Uses pilot jobs to prepare the required job environment






- Dirac scheduler can interface to
  - Cloud: OpenStack, OpenNebula, Amazon EC2
  - Most of the batch system: LSF, BQS, SGE, HTCondor, Slurm,
     ...
  - Grid environment through gLite (grid middleware)
- Central File catalog (data management system)
  - To keep track of all the physical file replicas
- Storage client for the main storage protocol
  - SRM, XrootD, RFIO, ...
  - gfal2 gives access to S3, WebDAV, ...

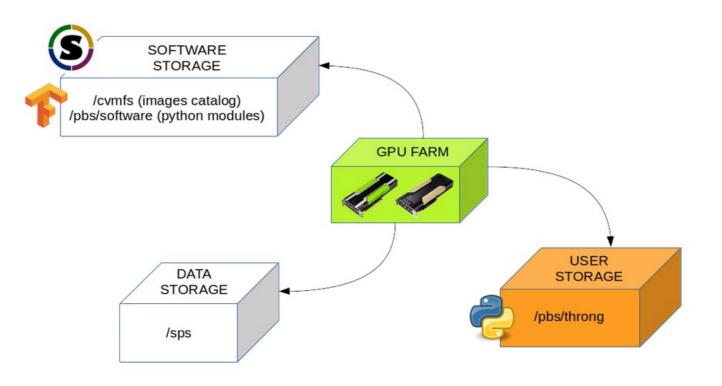


- CVMFS allows to distribute software among sites
  - Software always up-to-date on ALL sites
  - Few people to keep the software up-to-date



GDR Neutrino 2019




- Main repository is writable, used to deploy and update the software by the expert ('stratum 0')
- Software is then synchronised on the next layer ('stratum1')
- Sites provides local caches on the WNs, and Squids will feed these caches on jobs requests



GDR Neutrino 2019



- Two (small) Nvidia GPU clusters
  - K80 and V100
  - Softwares provided : Singularity images and TensorFlow
- Talk@GitLab (talk from a last GPU workshop @CC-IN2P3)



- User portal
  - https://portail.cc.in2p3.fr
- Ticketing system OTRS
  - https://cc-usersupport.in2p3.fr
- Documentation
  - https://doc.cc.in2p3.fr
  - Stay tuned, new documentation is on its way!



- Training @CC-IN2P3
  - https://indico.in2p3.fr/category/857/



# THANK YOU ! Any Question ?

