

European Research Council

CROSS

Cryogenic Rare-event Observatory with Surface Sensitivity

Towards the surface background rejection Preliminary results and prospects

GDR Neutrino meeting 2019 (Bordeaux, France)

G D R

Hawraa Khalife on behalf of the CROSS collaboration 3nd year PhD student @ CSNSM (Orsay, France)

30/10/2019

Outline

- Neutrinoless double beta decay
- Bolometric technology of CROSS
- CROSS above ground R&D runs at CSNSM (Orsay)
- Status of Canfranc cryostat
- Summary and prospects

Neutrinoless double beta decay

Double-decay in a nutshell

Double beta decay

• $2\nu 2\beta$: (A,Z) \rightarrow (A,Z+2) + $2e^{-}$ + $2\overline{\nu}_{e}$

- β
- Allowed in the standard model for 35 nuclei
 (observed for 11 nuclei: ⁷⁶Ge,⁸²Se,¹⁰⁰Mo,¹¹⁶Cd,¹³⁰Te...)
- Rarest observed nuclear decay: $T_{1/2} \simeq 10^{18} 10^{24}$ yr

Neutrinoless double beta decay

- $0v2\beta$: (A,Z) \rightarrow (A,Z+2) + 2e⁻
 - Forbidden in the standard model:
 - lepton number violation
 - $v = \overline{v}$ (Majorana particle)
 - $T_{1/2} > 10^{26}$ yr (....very long, e.g. ²³⁸U $T_{1/2} = 4.5 \times 10^9$ yr)

CROSS Bolometric technology

CROSS Overview

 \succ CROSS is a bolometric experiment to search for $0\nu\beta\beta$

 \succ Two promising Bolometers are used: Li₂¹⁰⁰MoO₄ and ¹³⁰TeO₂

> Main Objective: Rejection of surface events due to surface contamination

- Effective pulse shape discrimination (PSD) capability
- The surface sensitivity is achieved by Superconducting Al coating
- > Assembly simplification: light detector elimination (surface alphas have different light yield from β/γ)

Bolometric detectors

Bolometer

is a low temperature calorimeter which detects particle interaction via a small temperature rise induced by phonons production in the lattice of the absorber

Features

- High energy resolution
- Detector = source
- Full active volume (no dead layer)
- Background rejection methods (hybrid or surface sensitive detectors)
- Flexible material choice (Li₂MoO₄, ZnMoO₄, CaMoO₄, ZnSe, TeO₂...)

As in **CUORE**: Cryogenic Underground Observatory for Rare Events

Bolometric detectors

Bolometer

is a low temperature calorimeter which detects particle interaction via a small temperature rise induced by phonons production in the lattice of the absorber

Features

- High energy resolution
- Detector = source
- Full active volume (no dead layer)
- Background rejection methods (hybrid or surface sensitive detectors)
- Flexible material choice (Li₂MoO₄, ZnMoO₄, CaMoO₄, ZnSe, TeO₂...)

CUPID (CUORE Upgrade with Particle IDentification) adopts a method to reject surface α events in bolometers exploiting the scintillation ($Li_2^{100}MoO_4$) or Cherenkov radiation ($^{130}TeO_2$) emitted by the absorber, since $\alpha \& \beta/\gamma$ have different light yield.

CROSS proposes a technique to mitigate surface contamination (α's & β's) via providing bolometers with surface sensitivity
 → no light detector is needed

CROSS detector

Athermal phonons are immediately produced after particle interaction in the crystal, and then they evolve toward thermal phonons

NTD (neutron-transmutation-doped):

NTDs are sensitive rather to the **thermal** component due to their intrinsic slowness and the glue interface.

*J Low Temp Phys (2012) 167:1029–1034

NbSi film (insulator):

Deposited directly on the crystal over

a large surface, making them

sensitive to the prompt athermal

NbSi & NTD on TeO₂

Opposite behavior of NbSi and NTD on the same crystal!

CROSS R&D runs

- Sensitivity
- Energy resolution
- Pulse shape discrimination

Discrimination power

Discrimination power quantifies our ability to separate two populations

$$\mathsf{DP} = \frac{|\mu_2 - \mu_1|}{\sqrt{\sigma_2^2 + \sigma_1^2}}$$

Few µm Al film

 $TeO_2 - 1\mu m Al film$

Rise-time (ms)

6.5

the pulse-shape discrimination capability for both bolometers for surface alphas

Few-µm-thick aluminum film significantly improves

Test on a large crystal

Al film works well on a large crystal

Bolometer	FWHM _{bsl} (keV)	FWHM _{bsl} (nV)	Sensitivity (nV/keV)
LMO-22 mK (m14)	5.7	199	37

Li₂MoO₄ with Palladium film

To have a better discrimination (when using NTDs), we rely to have a film that thermalizes faster the athermal phonons

In principle, a normal metal should be a better thermalizer for athermal phonons than a superconductor

A test was performed on Li_2MoO_4 with 10 nm Pd film coating on one side facing a Uranium alpha source

(nm thickness to reduce specific heat capacity of Pd)

17

Li₂MoO₄ with Palladium film

further tests will be performed soon on Li₂MoO₄ fully coated with Pd to confirm our observation

Status of Canfranc cryostat

Commissioning of the CROSS cryostat

- The CROSS pulse tube cryostat (located in Laboratorio Subtarráneo de Canfranc [LSC]) was installed in April 2019
- Can host up to 90 dual readout bolometers (after upgrade)
- Fabricated with low background materials
- Remote-controlled interface
- Typical powers: 320 uW@100 mK, 6 uW@20 mK, 250 nW@10 mK
- Lead shielding was installed around the outer vacuum chamber (OVC), isolating the detectors from a high fraction of the external γ field

Preliminary detector test

 Natural Li₂MoO₄ scintillating bolometer (mass of 210 g) was running from April tell August 2019 at 10mK (no mechanical suspension of the 10mk plate)

	Sensitivity (nV/keV)	FWHM _{bsl} (keV)
Before inter	54	7.2
After 1 st inter	50	6.8
After 2 nd inter	78	7

FWHM @ ²⁰⁸Tl 2615 keV = 7.1 keV

Background level has not been estimated since the experimental volume is not yet fully shielded from the external gamma's

Before intervention: 1 layer of external lead shield around OVC 1st intervention: adding lead shield on the top of the existing lead shield

2nd intervention: adding the 2nd layer of lead around the OVC

In November, a test on this crystal + Al film coating on the lateral surface will be performed (to test discrimination and light collection)

First demonstrator of CROSS

- The planned date of the run: February-March 2020
- 8 Li₂¹⁰⁰MoO₄ crystals, decisions yet to be taken on the detector composition
 - crystals coating and thickness
 - LD coupling
 - NTDs glue
- Crystals coating, copper elements production: November-January 2020
- Detector assembly: January-February 2020
- First results: March 2020

Future medium scale demonstrator of CROSS

- The planned date of the run: 2021
- 32 Li₂¹⁰⁰MoO₄ crystals (4.7 kg of enriched ¹⁰⁰Mo (>95%) corresponding to 2.9×10^{25 100}Mo)
- background level in the range of 10⁻²-10⁻³ counts/(keV kg y)

This will test CROSS technique with high statistics and prove the stability and the reproducibility of the CROSS methods

Background level [counts / (keV kg y)]	Live time [y]	Half-life limit [y] (90% c.l.)	M _{ββ} limit [meV] (90% c.l.)
10-2	2	8.5×10 ²⁴	124-222
10-3	2	1.2×10 ²⁵	103-185
10-2	5	1.7×10 ²⁵	88-159
10-3	5	2.8×10 ²⁵	68-122

Summary and perspective

- > Next generation $0v2\beta$ searches with cryogenic detectors require an active rejection of surface contamination induced background
- > Most of the present active R&Ds are devoted to the developments of heat-light dual read-out bolometers for $0v2\beta$ searches
- CROSS aims at the development of bolometers capable to reject near surface interaction exploiting surface coating of superconducting Al or Pd films
- >This method will allow us to get rid of the light detector, simplifying a lot the bolometric structure
- Prototype tests on fully coated crystals is foreseen (Nov-Dec 2019)
- > A mid-scale experiment to be installed underground in the Canfranc laboratory

Thanks for your attention

Particle identification parameters

