

Detection of Core-Collapse Supernova neutrinos in DS20K and ARGO

P. Agnes, W. Bonivento, D. Franco, <u>M. Lai</u>, A. Renshaw, Z.Ye

On behalf of DarkSide Collaboration

DarkSide: Direct Dark Matter Detection in Liquid Argon

Looks at the light from WIMPs (Weakly Interacting Massive Particles) interactions with Liquid Argon nucleus.

WIMPs exclusion limits

Best exclusion limit with DS50 in the low mass region

 M_{WIMP} > 20 GeV/ c^2

 $E_{REC} \in (45 \text{ keV}_{NR} - 200 \text{ keV}_{NR})$

Background free analysis (< 0.1 events)

Excellent Pulse Shape Discrimination

Energy [keV_{nr}]

20

0.9

0.7

0.4

0.3

0.1

Acceptance

RR

40

60

80 100 120 140 160 180 200

Total cut acceptance

Overall NR Acceptance

Δ

f₉₀ NR Acceptance

https://arxiv.org/pdf/1802.07198.pdf

 $M_{WIMP} \in (1.8 \, GeV/c^2, 20 \, GeV/c^2)$ $E_{REC} \in (0.6 \, keV_{NR}, 15 \, keV_{NR})$

Very **low background**, almost all known

Calibration of S2-only response for both electron recoils and nuclear recoils

Calibration of the **ionization yield** down to 0.6 $keV_{\mbox{\tiny NR}}$

2 e⁻

Fiducia

Trigger efficiency

S2 Identification (f. <0.15)

3 e⁻

4 e

90

1 e[.]

0.5

0.45

0.3

0

0.15

0.1

0.05

Acceptance

DarkSide project

A Multi-Stage Experiment: three upcoming detectors

From DS50 to DS20K and ARGO

DS20K design:
-TPC filled with 38.6 ton of UAr
-Outer active veto of AAr (300 ton), with a layer of acrylic loaded with Gadolinium
-Plastic panels in a stainless steel array
-Set 3.800 m.w.e, in Hall C of LNGS.
-Read out via ~8000 SiPMs

ARGO design : -TPC filled with **300 ton of UAr** -Same shields of DS20K

-Set 6,000 m.w.e., at SNOLab

Why should we use our dark matter detectors for core-collapse Supernova neutrinos?

Core-collapse Supernova: what we know

Explosion mechanism of Type II Supernova

Colgate and White, 1966: **99% of the SN energy released via neutrinos**

Confirmed by the observation of SN 1987A, 50 kpc far (LMC)

Galactic rate $\sim 2/3$ per century

Duration time ~ 10 s

```
Energy released = 3 x 10<sup>46</sup> J via:
-Gravitational Waves
-Electromagnetic Waves
-Neutrinos
```

Average neutrino energy ~ **10 MeV**

Neutrino Mass Hierarchy

Beyond Standard Model physics from cooling phase

Complementarity with neutrino detectors

KM3NT/ORCA

Mainly via Elastic scattering High time resolution Low energy resolution

See Molla -Lincetto at https://www.epj-conferences.org/articles/epjconf/ pdf/2019/12/epjconf_vlvnt2018_05007.pdf DUNE

Mainly via Charged Current (CC) Huge target mass Low time resolution

Mainly via CevNS Low time resolution High energy resolution

Core collapse supernova model

1D simulation^[1] of 11 M_{sun} and 27 M_{sun} progenitor Supernovae, 10 kpc far, EoS LS220K

Assumed Normal Mass Ordering

[1] special thanks to Prof A. Mirizzi (Garching group)

$$f_0(E_\beta,t) = \frac{L_\beta(t)}{4\pi d^2} \frac{\phi_\beta(E,t)}{\langle E_\beta(t) \rangle}$$

$$\phi_{\beta}(E,t) = \frac{1}{\langle E_{\beta} \rangle} \left(\frac{E}{\langle E_{\beta} \rangle} \right)^{\alpha} \exp\left[(1+\alpha) \frac{E}{\langle E_{\beta} \rangle} \right] (1+\alpha)^{1+\alpha} \frac{1}{\Gamma(1+\alpha)}$$

Total emitted neutrinos: 7.91 x 10¹⁵ ν/m² from 11 M_{sun}SN 13.71 x 10¹⁵ ν/m² from 27 M_{sun}SN

Three phases: -Neutronization (~50 ms) -Accretion (~1 s) -Cooling (~9 s)

Onset of the collapse

Release of electron neutrinos from the core, until they get trapped, due to the increase of the local density $\sim 10^{11}~g/cm^3$

Neutronization phase

Almost not depending on the progenitor mass

Characteristic peak of electron neutrinos set free by the shock wave

Accretion phase

Supernova explosion **artificially** set at 0.5 s

Contribution to the neutrino emission from the accretion disk

Cooling phase

Longest lasting phase, **strongly dependent on the progenitor mass**

Release of neutrinos of all flavors as the proto-neutron star cools and deleptonizes

Neutrino Average energy

Average neutrino energy $\langle E \rangle \sim 10 \text{ MeV}$

How can DS20K and ARGO detect neutrino signal from a core-collapse supernova ?

Coherent Elastic neutrino- nucleus Scattering (CEvNS)

First observation by **COHERENT (2017)**

Detecting core-collapse supernova neutrinos

Experiment	Mass [ton]	v flavor	CS	# events 27 M _{sun}
DS20K	38.6	All	CevNS	~300
ARGO	300	All	CevNS	~2000
DUNE	~4 x 10 ⁴	\overline{v}_e	Mostly CC	~3000
НК	~4 x 10 ⁵	V _e	Mostly CC	~50000

CEvNS cross section: -Low threshold -Flavor insensitive

The Cross section compensates for the small target mass

Toy MonteCarlo pseudo-experiment

- 1) Event generation:
 - SN signal: recoil energy and time dependence for each v flavor
 - Background: recoil energy and time dependence
- 2) Detector effects:
 - S2 yield: converting ER and NR in number of electrons
 - Drift time, in agreement with the detector drift length, DS20k: 2.6 m ARGO: 3.5 m
- 3) Pseudo-experiments based on Poisson statistics
- 4) Analysis on each pseudo-experiment
- 5) Iteration on ~5000 pseudo-experiments

S2 only response

Expected backgrounds

Source	Rate	Rejection
Cryostat α /γ	0 (assumed negligible, work in progress)	Fiducialization in xy and multiple scatter
³⁹ Ar	0.7 mBq/kg	Constrained before and after the SN
Single electron	Measured from DS50 and scaled up by the volume	Constrained before and after the SN

39 Argon

Experiment	Mass[ton]	³⁹ Ar events in $\Delta t = 10 s$	v events 11 M _{sun} SN	v events 27 M _{sun} SN
DS20K	38.6	20	150	270
ARGO	300	100	1200	2110

Impurities

From 532-days DS50 analysis: -central PMT data -f90< 0.15 -single event -single pulse

Experiment	Mass [ton]	Impurities events in Δt = 10 s	v events 11 M _{sun} SN	v events 27 M _{sun} SN
DS20K	38.6	680	150	270
ARGO	300	5290	1200	2110

Too much background Threshold needed !

Electron drift through the TPC

The delay due to the drift time does not affect the shape of the signal

Time cut

High Signal to background ratio during neutronization and accretion phase

Electron cuts

Electron threshold

Experiment	Mass [ton]	39 Ar events in $\Delta t = 7$ s	Impurities events in $\Delta t = 7 s$	⊅ events 11 M _{sun} SN	⊅ events 27 M _{sun} SN
DS20K	38.6	5	12	150	270
ARGO	300	40	100	1200	2110

Discovery potential

SN and neutrino physics from the neutronization burst

The high Signal to background ratio compensates for the short integration time

Argo Measurement of Neutronization Burst

Good reconstruction of the **total energy** emitted and the **neutrino average energy**

Neutrino mass ordering from the neutronization burst

The comparison with DS20K and ARGO will allow for setting a limit on the neutrino mass ordering from the survival probability of electronic neutrinos released during the neutronization burst

$$f_i \approx \frac{E_{TOT}}{\langle E \rangle_i} \qquad \frac{f_e}{f_{tot}} = P_{ee}$$

 $P_{ee}^{NMO} \approx 0.022$ $P_{ee}^{IMO} \approx 0.297$

Thanks to the

-High (and flavor insensitive) cross section -Very low background level due to WIMP haunt

DS20K and ARGO are going to achieve

-5σ discovery for any galactic core-collapse supernova
-Reconstruction of total energy released via neutrinos
-Reconstruction of the average neutrino energy
-Inspection on the neutrino mass ordering (comparison with CC detection)

And so are going to be inserted in **SNEWS-2.0**

Any question?

FBK NUV-HD SiPM

٠

- Strict collaboration with *Fondazione Bruno Kessler (FBK)*: development of specific SiPM for LAr (50 PDM under way)
- The FBK technology on transfer to *LFoundry* for mass production (starting April 2019)
- Packaging of 240,000 SiPMs at NOA, a facility funded at LNGS

Filtered Peak [a.u.]

	DS-20k requirement	SiPM tile (PDM)	
Surface	5x5cm ²	24cm ² prototype 25cm ² final PDM	1
Power dissipation	<250mW	~170mW	1
PDE	>40%	$50\% \cdot \epsilon_{geom} = 45\%$	\checkmark
Noise Rate	$<0.1 cps/mm^2$	0.004cps/mm^2	1
Time Resolution	0(10ns)	16ns	1
Dynamic Range	>50	~100	1

