Super-Kamiokande The Gadolinium Era

Sonia El Hedri

GDR Neutrinos 2019

30 octobre 2019

Super-Kamiokande Cheat Sheet

Rock

🕨 Kamioka Mine, Japan

 Two parts : Outer Detector (veto) Inner Detector

- Surrounding radioactivity
 ⇒ Fiducial Volume 22.5 ktons
- Water constantly recirculated and purified
- 11456 ID PMTs : 50 cm, 3 ns resolution
- Energy coverage : 4 MeV to 1 TeV

Super-Kamiokande Cheat Sheet

Kamioka Mine, Japan

 Two parts : Outer Detector (veto) Inner Detector

Surrounding radioactivity
 ⇒ Fiducial Volume 22.5 ktons

- Water constantly recirculated and purified
- 11456 ID PMTs : 50 cm, 3 ns resolution

 Energy coverage : 4 MeV to 1 TeV

Rock

Oscillations

 $\begin{array}{l} {\rm Atmospheric\ neutrinos}\\ {\rm Solar\ parameters}\\ \nu_\mu \ {\rm disappearance}\\ \theta_{13}\ {\rm measurement}\\ {\rm CP\ violation} \end{array}$

Astrophysics

Solar neutrinos Supernova burst(s) Supernova relics (DSNB) Blazars ?

New Physics

New Physics

Oscillations

 $\begin{array}{l} {\rm Atmospheric\ neutrinos}\\ {\rm Solar\ parameters}\\ \nu_\mu \ {\rm disappearance}\\ \theta_{13}\ {\rm measurement}\\ {\rm CP\ violation} \end{array}$

Astrophysics

Solar neutrinos Supernova burst(s) Supernova relics (DSNB) Blazars ?

New Physics

Oscillations

 $\begin{array}{l} {\rm Atmospheric\ neutrinos}\\ {\rm Solar\ parameters}\\ \nu_{\mu}\ {\rm disappearance}\\ \theta_{13}\ {\rm measurement}\\ {\rm CP\ violation} \end{array}$

Oscillations

 $\begin{array}{l} {\rm Atmospheric\ neutrinos}\\ {\rm Solar\ parameters}\\ \nu_{\mu} \ {\rm disappearance}\\ \theta_{13} \ {\rm measurement}\\ {\rm CP\ violation} \end{array}$

Oscillations

 $\begin{array}{l} {\rm Atmospheric\ neutrinos}\\ {\rm Solar\ parameters}\\ \nu_\mu \ {\rm disappearance}\\ \theta_{13}\ {\rm measurement}\\ {\rm CP\ violation} \end{array}$

Astrophysics

Solar neutrinos Supernova burst(s) Supernova relics (DSNB) Blazars ?

New Physics

Oscillations

Astrophysics

Atmospheric neutrinos Solar parameters ν_{μ} disappearance θ_{13} measurement CP violation Solar neutrinos Supernova burst(s) Supernova relics (DSNB) Blazars?

New Physics

Proton decay Dark Matter

A myriad of new processes...but limited discriminating power!

On the importance of neutrons : low energies

On the importance of neutrons : high energies

ν - $\bar{\nu}$ discrimination

- Less efficient than at low energy
- Still works for CC interactions
- ► 80% tagging efficiency ⇒ better sensitivity for δ_{CP}

- CC/NC separation : reject NC for atmospheric oscillation analysis
- Energy reconstruction : neutral hadron production enhances neutron production
- Proton decay : neutron veto significantly reduces the atmospheric background

On the importance of neutrons : high energies

ν - $\bar{\nu}$ discrimination

- Less efficient than at low energy
- Still works for CC interactions
- ► 80% tagging efficiency ⇒ better sensitivity for δ_{CP}

- CC/NC separation : reject NC for atmospheric oscillation analysis
- Energy reconstruction : neutral hadron production enhances neutron production
- Proton decay : neutron veto significantly reduces the atmospheric background

Neutron tagging...but how?

- Tagging on hydrogen : large capture times, low energy signal
 ⇒ look for coincidences
- Existing algorithm : 15% signal efficiency for 0.01% background acceptance
- Neutron capture significantly improved with Gadolinium
- ▶ 0.1% Gd ⇒ capture probability

Neutron tagging...but how?

- Tagging on hydrogen : large capture times, low energy signal ⇒ look for coincidences
- Existing algorithm : 15% signal efficiency for 0.01% background acceptance
- Neutron capture significantly improved with Gadolinium
- ▶ 0.1% Gd \Rightarrow capture probability

One spoonful of Gadolinium

Gadolinium Sulfate

No reaction with the detector's components

Preserves water transparency

No additional radioactivity

Environmental/security issues?

A SK replica : EGADS

Evaluating Gadolinium Action on Detector Systems

- Small scale replica of SK : 200T tank
- ▶ 15T tank for Gd mixing
- Dedicated water system
- UDEAL : laser system to measure water transparency

Started in 2011 : empty tank + soak tests of Gd compounds
 April 2015 - September 2017 : run with 0.2% (Gd)₂(SO₄)³

A SK replica : EGADS

Gd and the detector's components

► Safest component : Gadolinium Sulfate (Gd)₂(SO₄)³

After 2.5 years exposure to (Gd)₂(SO₄)³ : "Looks great !"

Water purification : How to keep Gadolinium?

Band pass filter

Fast recirculation lon-exchange resin

Both systems (will) run in parallel in EGADS (SK-Gd)

Water Transparency and Gd concentration

Light @ 15 meters and Gd conc. in the 200-ton EGADS tank

Radioactive contamination and backgrounds

Backgrounds for solar and DSNB searches :

- Spontaneous fission : ${}^{238}U \rightarrow \gamma + n \sim 5 \text{ evts/year}$
- ▶ Neutron production : $U \rightarrow n \sim 320 \text{ evts/day}$
- ▶ β decay, γ emission : Th/Ra $\rightarrow \beta/\gamma + A \sim 3 \times 10^5$ evts/day

Need reductions by orders of magnitude :

Work with different compagnies on purification techniques

- Gd samples analyzed at Canfranc (LSC)/Boulby Mine/SK
- Gd pre-treatment : anion-exchange resins to remove U and Ra

Chain	lsotope	Typical	DSNB	Solar	А	В	С
²³⁸ U	238 U 226 Ra	50 5	<5 -	- 0.5	<0.04 <0.2	<0.04 <0.2	<0.04 1
²³² Th	²³² Th ²²⁸ Th	10 100	-	< 0.05 < 0.05	<0.02 <0.3	<0.06 <0.26	0.09 2
²³⁵ U	235 U 227 Ac $/^{227}$ Th	32 300	-	<3 <3	<0.4 <1.5	<0.3 <1.2	<1.3 <3.1

No reaction with the detector's components Verified with Gd₂(SO₄)³

Preserves water transparency Within SK-III and IV levels

 No additional radioactivity Purification by companies, pre-treatment during recirculation

Environmental/security issues? System to extract Gd from water, work with local community

From EGADS to Super-K Gd

May-September 2018 : SK refurbishment

► Replaced 136 PMTs

 Leak repair : cover welding points with BioSeal and MineGuard coating

Recalibration December 2019-April 2020

SK-Gd : timeline and expectations

- October 2018 : New water system implemented for SK Fast Recirculation only for now, Band Pass will be added later
- September 2019 : 13T ultra-pure GdSO₄ delivered at Super-K
- Before march 2020 : dilution 0.02% (Gd)₂(SO₄)₃
- ▶ End of 2020 (?) : dilution 0.2% (Gd)₂(SO₄)₃ [nominal]
- 2020 2030 : data-taking
- ► Tests with AmBe source in EGADS $\Rightarrow 80\%$ neutron/2 × 10⁻⁴ event⁻¹ background efficiency

Physics prospects : supernova neutrinos

- SN type II : collapse of the core of a massive star (> 8 M_☉)
 ⇒ Neutron star or black hole
- Mechanism still poorly understood : 3D simulations do not lead to explosions
- ▶ 99% of the energy of the supernovae $\Rightarrow 10^{57}$ neutrinos emitted in 10 seconds !
- Neutrino spectra track the core-collapse history
- Main detection channel in Super-K : inverse beta decay

Supernovae and multi-messenger

Supernova à 10 kpc :

- ► 7300 *v*_e
- ▶ 300 ν_e (elastic)
- Arrive before the visible signal

Alert system for other experiments :

- SNEWs : Super-Kamiokande, IceCUBE, KamLAND, LVD, Borexino, Daya Bay, HALO
- Warning for telescopes + analysis window for gravitational wave detectors
- Maybe pre-supernova neutrinos from Si burning?
- Gadolinium : Isolate elastic interactions ν_e \Rightarrow pointing with 3° resolution

But galactic supernovae are rare...

The Diffuse Supernova Neutrino Background (DSNB)

- Observable Universe : ~ 1 supernovae per second
- Past supernovae
 diffuse neutrino
 background
- All flavors of (anti)neutrinos

$$\Phi = \int \begin{bmatrix} \bar{\nu}_e \text{ emission} \\ \text{(black hole} \\ \text{fraction} \end{bmatrix} \otimes \begin{bmatrix} \text{Star} \\ \text{formation} \end{bmatrix} \otimes \begin{bmatrix} \text{Universe} \\ \text{expansion} \end{bmatrix}$$

Weak signal : 5 to 20 events/year

[Beacom and Vagins, Phys. Rev. Lett., 93 :171101, 2004]

[Beacom and Vagins, Phys. Rev. Lett., 93 :171101, 2004]

• After spallation cuts : $\sim 10^5$ spallation/solar evts in [8-30] MeV

- Spectral analysis : E = 17.3 MeV threshold \Rightarrow poor statistics...
- Neutron tagging : cut 75% of the signal for E < 16 MeV...

• After spallation cuts : $\sim 10^5$ spallation/solar evts in [8-30] MeV

- Spectral analysis : E = 17.3 MeV threshold \Rightarrow poor statistics...
- Neutron tagging : cut 75% of the signal for E < 16 MeV...</p>

• After spallation cuts : $\sim 10^5$ spallation/solar evts in [8-30] MeV

- Spectral analysis : E = 17.3 MeV threshold \Rightarrow poor statistics...
- Neutron tagging : cut 75% of the signal for E < 16 MeV...
- Gadolinium is necessary for this analysis!

DSNB detection : the future

- Prospects : explore regions favored by SN1987A
- New neutron tagging algorithm : understand Gd neutron capture signal, bring background acceptance below 10⁻⁴
- Spallation reduction : tag secondaries from muon showers
- Data interpretation : pave the way to more precise measurements in HK !

Conclusion

- SK-Gd will start in a few months
- Key project for the next decade : our best chance to observe supernova relic neutrinos
- Analysis work for the next few years :
 - o Understand Gd neutron capture signal
 - o New neutron tagging algorithms
 - o Understand the mechanisms of spallation
- SRN contains essential information on supernova mechanisms and the history of the Universe ⇒ these must be disentangled !
- Prepare for a full spectrum analysis in Hyper-K?

