Probing new physics with Tau Neutrino Appearance in DUNE

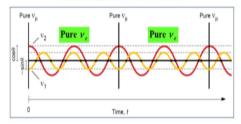
Anish Ghoshal

Laboratorie Nazionale Frascati - INFN University Roma Tre

anishghoshal1@gmail.com

October 30, 2019 CENBG

Based on -(i) **A. Ghoshal**, A.Giarnetti and D.Meloni, arXiv:1906.06212 (ii) **A. Ghoshal**, A.Giarnetti and D.Meloni, [draft in preparation - 1911.xxxxx]


Outline of talk:

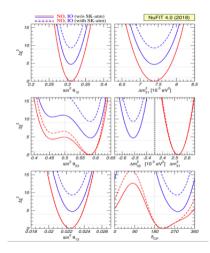
- Neutrino Oscillation.
- Deep Underground Neutrino Experiment (DUNE).
- ν_{τ} Appearance in DUNE.
- Standard Physics & Effect of Systematics.
- Sterile Neutrino in 3+1 scheme.
- Non-Standard Interaction (NSI).
- Neutrino Decay.
- Extracting Further New Physics with ν_{τ} .

Introduction:

Neutrino Oscillation is now well-known phenomena.

Flavor changes happen during the propagation of neutrinos!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

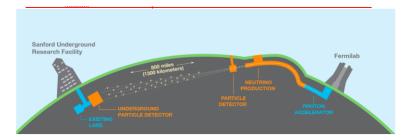

Introduction:

Probability of Neutrino Oscillation:

$$\begin{split} i \frac{d}{dx} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} &= H^{\nu} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \\ H^{\nu} &= H_{\text{vac}} + H_{\text{mat}} \quad \text{and} \quad H^{\bar{\nu}} = (H_{\text{vac}} - H_{\text{mat}})^* \\ H_{\nu ac} &= U \cdot \text{Diag}(m_1^2/2E_{\nu}, m_2^2/2E_{\nu}, m_3^2/2E_{\nu}) \cdot U^{\dagger} \\ U &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{bmatrix} \begin{bmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{i\theta} \\ 0 & 1 & 0 \\ -\sin\theta_{12}e^{-i\theta} & 0 & \cos\theta_{13} \end{bmatrix} \begin{bmatrix} \cos\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \mathcal{P}(\nu_{\alpha} \rightarrow \nu_{\beta}) &= \delta_{\alpha\beta} - 4\Re \left[\sum_{1>j}^{3} U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j} \sin^2 \left(\frac{\Delta m_{1j}^2 L}{4E} \right) \right] + 2\Im \left[\sum_{1>j}^{3} U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j} \sin \left(\frac{\Delta m_{1j}^2 L}{2E} \right) \right] \end{split}$$

Introduction:

NuFit values of the oscillation parameters:



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

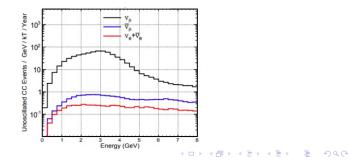
Deep Underground Neutrino Experiment:

DUNE in a nutshell:

- Intense beam of u_{μ} fired from FermiLab at a large detector 1300 KM away.
- Large (40 kt) Underground Liquid Argon detector at Sanford Underground Research Facility (SURF).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Deep Underground Neutrino Experiment:


Standard Phenomenology in DUNE:

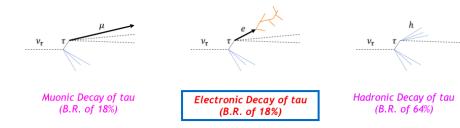
<u>v_e appearance</u>

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E}\right)$$

v_{μ} disappearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - (\sin^2 2\theta_{23} \cos^4 \theta_{13} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

Calculation of Events – Standard


$ u$ mode (150 kt \cdot MW \cdot year)			
ν_e Signal NH (IH)	861 (495)		
$\bar{\nu}_e$ Signal NH (IH)	13 (26)		
Total Signal NH (IH)	874 (521)	_	
Beam $ u_e + ar{ u}_e$ CC Bkgd	159		
NC Bkgd	22		
$ u_ au + ar u_ au$ CC Bkgd	42		
$ u_{\mu} + ar{ u}_{\mu}$ CC Bkgd	3		
Total Bkgd	226	$ u$ mode (150 kt \cdot MW \cdot year)	
		. Cinnal	10040
$ar{ u}$ mode (150 kt \cdot MW \cdot year)		$ u_{\mu}$ Signal	10842
$\frac{\nu \text{ mode (150 kt} \cdot \text{MW} \cdot \text{year)}}{\nu_e \text{ Signal NH (IH)}}$	61 (37)	$-\frac{\nu_{\mu}}{\bar{\nu}_{\mu}}$ CC Bkgd	958
, , ,	61 (37) 167 (378)		
ν_e Signal NH (IH)		$\bar{\nu}_{\mu}$ CC Bkgd	958
$ u_e \text{ Signal NH (IH)} $ $ \overline{\nu}_e \text{ Signal NH (IH)} $	167 (378)	$\bar{\nu}_{\mu}$ CC Bkgd NC Bkgd	958 88
	167 (378) 228 (415)	$ar{ u}_{\mu}$ CC Bkgd NC Bkgd $ u_{ au} + ar{ u}_{ au}$ CC Bkgd	958 88
$ \begin{array}{c} \nu_e \mbox{ Signal NH (IH)} \\ \bar{\nu}_e \mbox{ Signal NH (IH)} \\ \hline \mbox{ Total Signal NH (IH)} \\ \hline \mbox{ Total Signal NH (IH)} \\ \hline \mbox{ Beam } \nu_e + \bar{\nu}_e \mbox{ CC Bkgd} \\ \hline \mbox{ NC Bkgd} \\ \nu_\tau + \bar{\nu}_\tau \mbox{ CC Bkgd} \\ \end{array} $	167 (378) 228 (415) 89	$ \begin{array}{c} \bar{\nu}_{\mu} \ \text{CC Bkgd} \\ \text{NC Bkgd} \\ \bar{\nu}_{\tau} + \bar{\nu}_{\tau} \ \text{CC Bkgd} \\ \hline{\bar{\nu}} \ \text{mode (150 kt \cdot MW \cdot year)} \end{array} $	958 88 63
	167 (378) 228 (415) 89 12	$ \begin{array}{l} \bar{\nu}_{\mu} \ {\rm CC} \ {\rm Bkgd} \\ {\rm NC} \ {\rm Bkgd} \\ \bar{\nu}_{\tau} + \bar{\nu}_{\tau} \ {\rm CC} \ {\rm Bkgd} \\ \bar{\nu} \ {\rm mode} \ (150 \ {\rm kt} \cdot {\rm MW} \cdot {\rm year}) \\ \bar{\nu}_{\mu} \ {\rm Signal} \end{array} $	958 88 63 3754

[DUNE Design Report Vol 2. (2016)]

Tau Detection

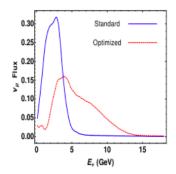
Detection

• $\nu_{\mu} \rightarrow \nu_{\tau}$ channel has never been considered in the simulations of DUNE hitherto. In fact tau neutrinos are difficult to observe. Furthermore, the interactions of these neutrinos have a rather high energy threshold (3.4), which is why the number of events expected for this process is low.

Disclaimer - - we do not say this is the most suitable channel for detection.

Signal and Backgrounds

We consider au
ightarrow e as the detection channel. ICARUS proposal followed this strategy.



We consider various configurations to understand their impact on final sensitivities.

- 20% & 10% Signal Uncertainties in the ν_{τ} channel.
- 100% & 33% of electrons being detected (detection efficiency).
- S/B values of 2.46 and 18.6.
- Standard and Tau-Optimized Fluxes.

Neutrino Flux

The standard flux consists of beam delivering 1.47×10^{21} protons on target (POT) per year with 80 GeV energy running with 1.07 MW beam power and having 1.5 m NuMi (Neutrino Main Injector) style target. The τ - optimized flux is as per proposed by the DUNE collaboration consists of 1.1×10^{21} protons on target (POT) per year with 120 GeV energy running with 1.2 MW beam power and having 1m NuMi style target.

Rate Estimation

A comparison of ν_{τ} events:

ν mode		$\bar{\nu}$ mode	
ν_{τ} Signal	277	ν_{τ} Signal	68
$\bar{\nu}_{\tau}$ Signal	26	$\bar{\nu}_{\tau}$ Signal	85
Total Signal	303	Total Signal	
$\nu_e + \bar{\nu}_e$ CC Background (beam)	333 + 38	38 $\nu_e + \bar{\nu}_e$ CC Background (beam) 117 -	
CC Background (oscillation)	1753 + 12	ν_e CC Background (oscillation)	90 + 188

Figure: Standard Flux

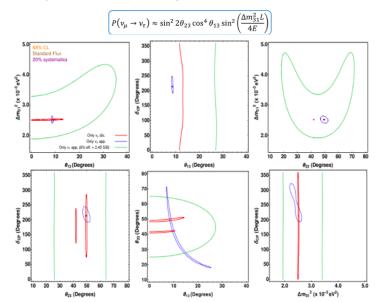
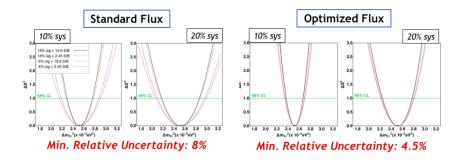

ν mode		$\bar{\nu}$ mode	
ν_{τ} Signal	2673	ν_{τ} Signal	98
$\bar{\nu}_{\tau}$ Signal	34	$\bar{\nu}_{\tau}$ Signal	983
Total Signal	2707	Total Signal	1081
$\nu_e + \bar{\nu}_e$ CC Background (beam)	688 + 63	$\nu_e + \bar{\nu}_e$ CC Background (beam)	176 + 177
CC Background (oscillation)	1958 + 11	ν_e CC Background (oscillation)	76 + 324

Figure: Optimized Flux

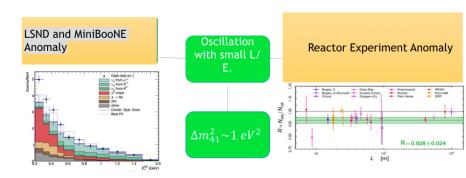
Experiment run-time of (3.5 + 3.5) years. Latest NuFit values of the Oscillation parameters used.

Correlation Studies


Standard Physics does not improve using ν_{τ} channel.

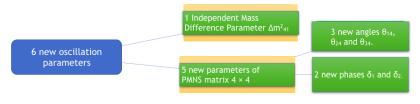
) ୬ ୯ ୯

Comparison with OPERA


OPERA has observed 10 events in the $\nu_{\mu} \rightarrow \nu_{\tau}$ channel. Using these events the Δm^2_{31} parameter uncertainty is about 26%. Using the τ events in DUNE this can be largely improved.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

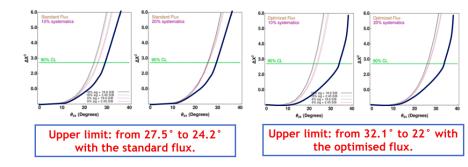
Short Baseline Anomaly


Long Discussions Yesterday:

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

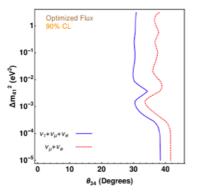
Sterile Neutrinos in 3+1 Scheme

The simplest model that includes sterile neutrinos is the 3 + 1 model, in which only one sterile neutrino is added.

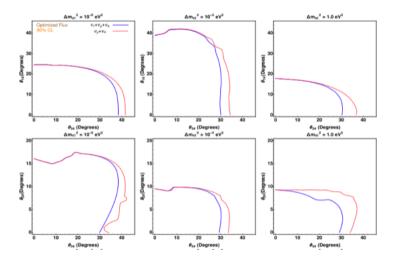

 $U_{PMNS} = R(\theta_{34})R(\theta_{24})R(\theta_{23}; \delta_2)R(\theta_{14})R(\theta_{13}; \delta_3)R(\theta_{12}; \delta_1)$

Parameters

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) = & 2|U_{14}|^{2}|U_{24}|^{2} + 4\Re[U_{23}^{*}U_{13}(U_{23}U_{14}^{*} + U_{24}U_{14}^{*})] \sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E}\right) + \\ & - 2\Im(U_{23}^{*}U_{13}U_{24}U_{14}^{*}) \sin\left(\frac{\Delta m_{32}^{2}L}{2E}\right) \end{split} \tag{4.2} \end{split}$$


Effect of Systematics

Effect of Systematics, detection efficiencies, S/B values and two fluxes on the measurement of $\theta_{34}.$


Correlation Studies

We can see the maximum effect is on the improvement of θ_{34} only.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Correlation Studies

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

New Physics: NSI

Diligent way to capture the effect of new physics, in terms of four-fermion interaction.

$$-\mathcal{L}_{\rm NSI}^{eff} = \varepsilon_{\alpha\beta}^{fP} 2\sqrt{2} G_F(\bar{\nu}_{\alpha}\gamma_{\rho}L\nu_{\beta})(\bar{f}\gamma^{\rho}Pf)$$

$$i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta_{21} & 0 \\ 0 & 0 & \Delta_{31} \end{bmatrix} U^{\dagger}_{PMNS} + A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon^*_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon^*_{e\tau} & \epsilon^*_{\mu\tau} & \epsilon_{\tau\tau} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$

$$P(\nu_{\alpha} \to \nu_{\beta}; \varepsilon_{e\mu}, \varepsilon_{e\tau}, \varepsilon_{\mu\mu}, \varepsilon_{\mu\tau}, \varepsilon_{\tau\tau}) = P(\nu_{\alpha} \to \nu_{\beta}; 2 \text{ flavor in vacuum} + P(\nu_{\alpha} \to \nu_{\beta}; \varepsilon_{e\mu}, \varepsilon_{e\tau}) + P(\nu_{\alpha} \to \nu_{\beta}; \varepsilon_{\mu\mu}, \varepsilon_{\mu\tau}, \varepsilon_{\tau\tau}),$$

New Physics: NSI

Tau Appearance Probability with NSI:

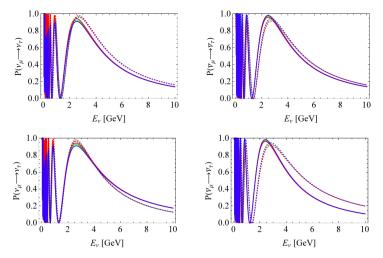
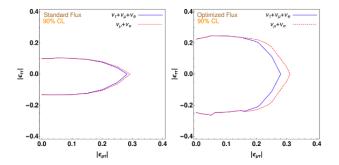
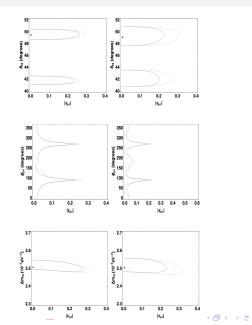



Figure: Solid/Dotted - NH/IH. Green/Red/Blue - $\delta_{CP} = [0, \pi/2, -\pi/2]$. Top/Bottom - (No NSI; $[\epsilon_{\mu\tau}, \epsilon_{\tau\tau}] = (0.07, 0.147)$)

NSI:Correlation Studies

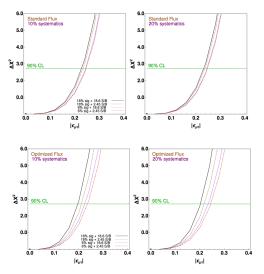
NSI probability


$$P_{\mu\tau} = P_{\mu\tau}^{SM} + \left(\frac{1}{2}\epsilon_{\tau\tau}\cos^2(2\theta_{23}) + 2\cos(2\theta_{23})\operatorname{Re}\{\epsilon_{\mu\tau}\}\right)(AL)\sin\left(\frac{\Delta m_{31}^2L}{2E}\right) + \mathcal{O}(\epsilon^2)$$

In the optimized flux, we do not get the advantage of increased tau-statistics as ν_e & ν_μ channels are also increased.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへぐ

NSI Correlation Studies



æ

ъ

NSI:Sensitivity on NSI parameter

Impact of Systematics, detection efficiencies, S/B values and two fluxes on the measurement of $|\epsilon_{\mu\tau}|.$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Neutrino Decay

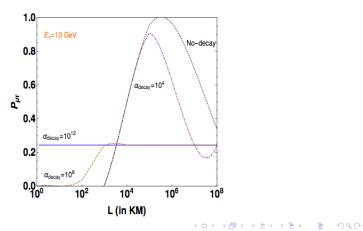
Neutrino Decay - - Introduction

$$\mathcal{L}_{ ext{int}} = rac{(g_s)_{ij}}{2}ar{
u}_i
u_jS + irac{(g_p)_{ij}}{2}ar{
u}_i\gamma_5
u_jS$$

$$\nu_i \rightarrow \nu + S$$

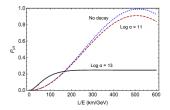
$$\Gamma_i(L, E) = \exp\left(-\alpha_i \times L/E\right)$$

$$lpha_i = rac{m_i}{ au_i}$$


$$\begin{pmatrix} \nu_{\alpha} \\ \nu_{s} \end{pmatrix} = \begin{pmatrix} U_{PMNS} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_{i} \\ \nu_{4} \end{pmatrix}$$

$$H = U \begin{bmatrix} \frac{1}{2E} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^{2} & 0 \\ 0 & 0 & \Delta m_{31}^{2} \end{pmatrix} - i \frac{\alpha_{3}}{2E} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} U^{\dagger} + \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

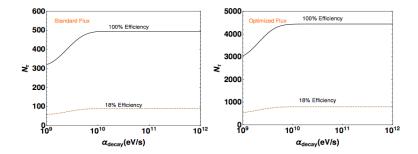
Why Interesting for DUNE


$$\begin{split} P_{\mu\mu}(E,L,\alpha_3) &= \left(\cos^2\theta_{23} + \sin^2\theta_{23}e^{-\frac{\alpha_3}{2E}L}\right)^2 \\ &- 4\cos^2\theta_{23}\sin^2\theta_{23}e^{-\frac{\alpha_3}{2E}L}\sin^2\left(\frac{\Delta m_{31}^2L}{4E}\right) \\ &+ 4\cos^2\theta_{23}\sin^2\theta_{23}e^{-\frac{\alpha_3}{2E}L}\sin^2\left(\frac{\Delta m_{31}^2L}{4E}\right) \\ \end{split}$$

Decay term causes vanishing of interference effects. Increase in Probability.

Why Interesting for DUNE

DUNE is very suited to explore this increased probability region due to its L/E.

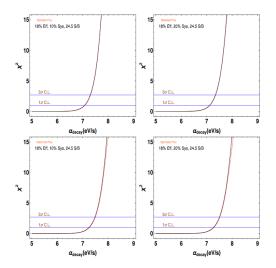


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some Preliminary Results

Expected number of ν_{τ} events:

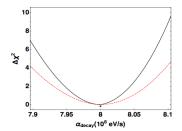
$$N_{ au} = \epsilon_{det} imes n_{p.o.t.} imes N_{Ar} imes \int dE_{\mu}(\phi) \sigma_{
u_{ au}}(E) P_{\mu au}(E, lpha_3)$$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Disclaimer - - preliminary calculations only. Final results may differ !

Some Preliminary Results


Sensitivity of measurement of α :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some Preliminary Results

Chi-squared Fit Analysis:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusions

- In the case of standard physics, the addition of ν_{τ} appearance channel does not improve the sensitivities of any of the neutrino oscillation parameter set by the other two channels already being considered in DUNE.
- We studied the impact of various systematics, ν_{τ} detection efficiencies, experimental reaches (2 different S/B ratios) and the two fluxes on the sensitivities of the oscillation parameters. The performances of the tau optimized flux in the ν_e appearance and ν_{μ} disappearance channels result in worsening the sensitivities overshadowing the advantage one may get from the increase in the ν_{τ} statistics. This is mainly due to the increased background events in both the ν_e and ν_{μ} channels.
- In the new physics cases, NSI parameter sensitivities remains less unaffected after the addition of the new channel, except for the coupling $|\epsilon_{\mu\tau}|$ for which improved limits (about 15% better) was found.
- For the sterile neutrino (3+1) case, the only parameter that shows an increase in sensitivity is the mixing angle θ_{34} and we estimated the improvement to be about 20%.
- Neutrino Invisible Decay constant parameter can be constrained using the ν_{τ} appearance channel due to a suitable L/E configuration that DUNE provides.

Future Directions

- Study involving shared run-time between Standard and Optimized fluxes so as to maximize the tau channel capabilities.
- Combining electronic and hadronic channels of tau decay so as to maximize the tau detection efficiency and consequently increase in tau-statistics.
- $\nu_{\mu} \rightarrow \nu_{\tau}$ maybe suited to study Large Extra Dimension scenarios.
- $\nu_{\mu} \rightarrow \nu_{\tau}$ maybe suited to study dark matter scenarios especially searches in dark sectorinvolving $L_{\mu} L_{\tau}$ symmetries and its corresponding mediators.

- Probe of Non-Unitary and Lorentz Violating Operators using $\nu_{\tau}-$ appearance channel.
- Other suggestions are welcome.

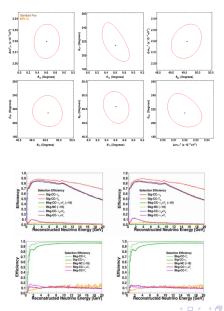

Stay tuned. Work in Progress !!

Essential References

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- arxiv 1811.05487
- arxiv 1512.06148
- arxiv 1606.09550
- arxiv 0407333
- ICARUS: http://cds.cern.ch/record/574836/files/spsc-p-323.pdf
- arxiv 0110393
- arxiv 0402175
- arxiv 0705.0107
- arxiv 1209.2710
- arxiv 010317
- arxiv 1603.08696
- arxiv 1805.01747
- arxiv 1811.00095
- arxiv 1904.07265
- http://home.fnal.gov/ ljf26/DUNEFluxes

Thank You


	Standard Flux		Optimized Flux		
	ν mode	$\bar{\nu}$ mode	ν mode	$\bar{\nu}$ mode	
$\nu_{\mu} CC$	30175	3225	85523	4933	
$\bar{\nu}_{\mu}$ CC	1025	9879	1256	26221	
$\nu_e CC$	371	136	856	258	
$\bar{\nu}_e$ CC	44	109	84	215	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

	signal	b	ackgrou	nds	
		intrinsic ν_e	mis ν_{μ}	mis ν_{τ}	NC
	$\nu_{\mu} \rightarrow \nu_{e} \oplus \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$				
neutrino mode	$1188 \oplus 11.5$	288.2	3.1	19.9	26
	$\nu_{\mu} \rightarrow \nu_{\mu} \oplus \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$				
	$7601 \oplus 519.2$			28.2	75.3
	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \oplus \nu_{\mu} \rightarrow \nu_{e}$				
antineutrino mode	$209 \oplus 64$	171.8	2.9	13.4	15.2
	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \oplus \nu_{\mu} \rightarrow \nu_{\mu}$				
	$2591 \oplus 1489$			16.5	44.1

ν_e appearance channel				
Signal	ν_e and $\bar{\nu}_e$ CC events from ν_μ oscillations 2% s			
	Beam ν_e and $\bar{\nu}_e$ CC events	5% sys		
Backgrounds	Misidentified ν_{μ} and $\bar{\nu}_{\mu}$ CC events	5% sys		
	Misidentified ν_{τ} and $\bar{\nu}_{\tau}$ CC events	20% sys		
	Misidentified NC events	10% sys		
	ν_{μ} disappearance channel			
Signal	ν_{μ} and $\bar{\nu}_{\mu}$ CC events	5% sys		
Backgrounds	Misidentified ν_{τ} and $\bar{\nu}_{\tau}$ CC events	20% sys		
	Misidentified NC events	10% sys		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

NSI parameters	Limits
$\epsilon_{ee} - \epsilon_{\mu\mu}$	(-0.2, 0.45)
$ \epsilon_{e\mu} $	< 0.1
$ \epsilon_{e\tau} $	< 0.3
$\epsilon_{\tau\tau} - \epsilon_{\mu\mu}$	(-0.02, 0.175)
$ \epsilon_{\mu\tau} $	< 0.03

◆□ → < □ → < Ξ → < Ξ → < Ξ → < ○ < ○</p>