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Outline

‣ Motivations and approach Beyond the Standard Model 
‣ Neutrino mass models crash review: tree & loop 
‣ Lepton Flavour Universality Violation (LFUV) in B decays? 
‣ A minimal model connecting these with Dark Matter (DM) 
‣ Parameters and pheno constraints: 

✴Neutrino masses 
✴DM relic density 
✴Charged Lepton Flavour Violation (cLFV)
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Introduction
The Standard Model (SM): Highly successful but incomplete … 
Hundreds of theoretical models with various th./aesthetical motivations : 
‣ Flavour puzzle 
‣ Unification of interactions 
‣ Hierarchy Problem 
‣ Matter-antimatter asymmetry 
‣ ??? 

Strategy:  
‣ Start from solid BSM evidence: 

Neutrino Oscillations!!! 
=> neutrino masses  
=> New physics beyond the SM  
(SM neutrinos are strictly massless) 

‣ If possible, help the Dark Matter (DM) problem 
‣ Seek further guidance from (prelim.) experimental anomalies:  B-decays, (g-2)μ , …
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Neutrino mass models
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Simplest implementation of observed neutrino kinematical mass: 

                             
‣ requires 3 new fields νR,i  with no SM charge (?check?)  

‣ However nothing, except (anomalous) L-number, then forbids  
                         

lifting Dirac degeneracy: in terms of Majorana spinors   
              

‣ In the limit of large M ≈ MN , see-saw formula : 

           
✴GUT: YD ~ 1 → M ~ 1015GeV 
✴ νMSM: M < EEW → YD ≪ 10-8 (??)

LD = YD,ij ⌫̄R,i�
†Lj + h.c .

LM = Mij ⌫̄
c
R,i⌫R,j + h.c .

N = ⌫R + C ⌫̄TR

LM + LD =
1

2
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Neutrino Mass Models: Dirac mass term
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FIG. 2: Diagrammatic representation of the Type I seesaw

though, to have a ⌫R per family, in which case an accidental anomaly free global symmetry

of the MSM can be gauged. A neutrino per generation is needed to cancel U(1)3
B�L

anomaly.

The diagrammatic representation of the seesaw in Fig.2 may be even more clear; it is

easy to see that the heavy neutrino propagator gives the seesaw result.

B. Y = 2, SU(2)L triplet Higgs: Type II seesaw

Instead of ⌫R, a Y = 2 triplet �L ⌘ ~�L · ~� can play the same role [32] [33] [34]. From

the new Yukawas

�L(�) = yij

�`T

i
C�2�L`j + h.c. (19)

where i, j = 1, ...N counts the generations, neutrinos get a mass when �L gets a vev

M⌫ = y�h�i (20)

The vev h�i results form the cubic scalar interaction

�V = µ�T �2�
⇤
L
� + M2

�Tr�†
L
�L + ... (21)

with

h�i ' µv2

M2
�

(22)

where one expects µ of order M�. If M� � v, neutrinos are naturally light. Notice that

(20) and (22) reproduce again the formula (12) as it must be: for large scales of new physics,

neutrino mass must come from d = 5 operator in (9).

Again, the diagrammatic representation may be even more clear, see Fig. 3.
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Neutrino Mass Models: See-Saw = tree inside Weinberg

Step back: without new fields, need effective dim. 5 operator
‣Weinberg operator 
 
3 possible renormalisable «blow-up» by tree-level 
  single field exchange, giving  :m⌫ ⇠ m�1(2)

new
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where one expects µ of order M�. If M� � v, neutrinos are naturally light. Notice that
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FIG. 3: Diagrammatic representation of the Type II seesaw

C. Y = 0, SU(2)L triplet fermion: Type III seesaw

The Yukawa interaction in (15) for new singlet fermions carries on straightforwardly to

SU(2) triplets too, written now in the Majorana notation (where for simplicity the generation

index is suppressed and also an index counting the number of triplet - recall that at least

two are needed in order to provide two massive light neutrinos)

�L(TF ) = yT `T C�2~� · ~TF � + MT
~T T

F
C ~TF (23)

In exactly the same manner as before in Type I, one gets a Type III seesaw [35] for MT � v

M⌫ = �yT

T

1

MT

yT v2 (24)

Again, as in the Type I case, one would need at least two such triplets to account for the

solar and atmospheric neutrino oscillations (or a triplet and a singlet). And, as before, (24)

simply reproduces (12) for large MT , and SU(2)⇥ U(1) symmetry dictates.

Under the assumption of single type of new particles added to the SM, these three types

of seesaw exhaust all the possibilities [36] of reproducing (9) and (12).

Exercise: Show that the three possible di↵erent operators of the type (9) correspond to

the three di↵erent types of seesaw.

Since (9) and (12) describe e↵ectively neutrino Majorana masses in the MSM, the question

is whether we gain anything by going to the renormalizable seesaw scenarios. If the new

scales MR, M� and MT are huge and not accessible to experiment, then arguably 17), or

(20) and (22 , or (24), are equivalent to the (9) or (12). In a sense, they are only a change

of language, but not a useful language. We have traded the couplings y⌫ between physical,

LW
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C. Y = 0, SU(2)L triplet fermion: Type III seesaw

The Yukawa interaction in (15) for new singlet fermions carries on straightforwardly to

SU(2) triplets too, written now in the Majorana notation (where for simplicity the generation

index is suppressed and also an index counting the number of triplet - recall that at least

two are needed in order to provide two massive light neutrinos)
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Again, as in the Type I case, one would need at least two such triplets to account for the

solar and atmospheric neutrino oscillations (or a triplet and a singlet). And, as before, (24)

simply reproduces (12) for large MT , and SU(2)⇥ U(1) symmetry dictates.

Under the assumption of single type of new particles added to the SM, these three types

of seesaw exhaust all the possibilities [36] of reproducing (9) and (12).

Exercise: Show that the three possible di↵erent operators of the type (9) correspond to

the three di↵erent types of seesaw.

Since (9) and (12) describe e↵ectively neutrino Majorana masses in the MSM, the question

is whether we gain anything by going to the renormalizable seesaw scenarios. If the new

scales MR, M� and MT are huge and not accessible to experiment, then arguably 17), or

(20) and (22 , or (24), are equivalent to the (9) or (12). In a sense, they are only a change

of language, but not a useful language. We have traded the couplings y⌫ between physical,
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Neutrino Mass Models : radiative = loop(s) inside Weinberg

Loop(s) allow to lower the new physics scale for O(1) couplings:

review: Cai’1706.08524
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Figure 17: 1-loop neutrino masses generated

in the Zee model in the flavor basis.

Field Spin GSM

h+ 0 (1, 1, 1)

Φ 0 (1, 2, 1
2 )

Table 6: Quantum numbers for new particles

in the Zee model.

For the case of the doubly-charged scalar, one can construct the ∆L = 2 term precisely with

two singly-charged scalars h+

VZB ⊂ µZB h+h+(k++)∗ + H.c. . (82)

Notice that no other combination with SM fields exist, given the large electric charge of k++.

In this case, neutrino masses are generated at 2-loop order. This is known as the Zee-Babu

model [76, 605].

These are the simplest radiative models. By using particles that couple to a lepton and a quark

(leptoquarks), one can also have ∆L = 2 interactions and generate neutrino masses at a different

number of loops. In the following, we will discuss the Zee and Zee-Babu models.

5.1.1 The Zee model

In addition to the SM content with a Higgs scalar doublet H, the Zee model [104, 105] contains

an extra Higgs scalar doublet Φ and a singly-charged scalar singlet h+, which is shown in Tab. 6.

It is an example of the operator O2 = LiLjLkecH lϵijϵkl. Several aspects of the phenomenology of

the model have been studied in Refs. [157, 289, 452, 606–620]. While the Zee-Wolfenstein version

where just the SM Higgs doublet couples to the leptons has been excluded by neutrino oscillation

data [156, 157], the most general version of the Zee model in which both couple remains allowed

[158] and has been recently studied in Ref. [91] (see also Refs. [159, 160] for a variant with a

flavor-dependent Z4 symmetry).

The Yukawa Lagrangian is

− LL = L (Y †
1 H + Y †

2 Φ)eR + L̃f Lh+ + H.c. , (83)

where L = (νL, eL)T and eR are the SU(2) lepton doublets and singlets, respectively, and L̃ ≡
iτ2Lc = iτ2CL

T
with τ2 being the second Pauli matrix. Due to Fermi statistics, f is an antisym-

metric Yukawa matrix in flavor space, while Y1 and Y2 are completely general complex Yukawa

matrices. Furthermore, the charged-lepton mass matrix is given by

mE =
v√
2

(cβY †
1 + sβY †

2 ) , (84)

where tan β = sβ/cβ = v2/v1 with ⟨H0⟩ = v1 and ⟨Φ0⟩ = v2 and v2 = v2
1 + v2

2 . Without loss of

generality, one can work in the basis where mE is diagonal.

55

LW

L L

H H

L ē LēN

S1 S1S2 S2

Figure 19: 3-loop neutrino masses generated

in the KNT model.

Field Spin GSM Z2

S1 0 (1, 1, −1) +

S2 0 (1, 1, −1) −

N 1
2 (1, 1, 0) −

Table 8: Quantum numbers for new particles

in the original KNT model.

model the charged singlet mixes with the charged component of the doublet. Some of the most

important predictions of the model are due to the presence of the doubly-charged scalar k++.

Firstly, k++ mediates trilepton decays (ℓi → ℓjℓkℓl) at tree-level which unlike, in the Zee model,

are not suppressed by the small charged lepton masses, as well as radiative decays (ℓi → ℓjγ).

Secondly, k++ can be pair-produced at the LHC via Drell-Yan, decaying among other final states

into same-sign leptons which yields a clean experimental signature. See the discussion in Sec. 4.5.

5.2 KNT-models

The first radiative neutrino mass model at 3-loop order is the KNT model [356] which has one

fermionic singlet N and two singly-charged scalars S1,2 in addition to the SM particles. A discrete

Z2 symmetry is imposed, under which only S2 and N are odd. We list the quantum numbers of

the exotic particles in Tab. 8.

The Z2 symmetry forbids the usual type-I seesaw contribution at tree-level. The relevant

Lagrangian is expressed as
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where the flavor indices of f and g are all suppressed. With this setup, neutrino masses are

generated first at 3-loop order as shown in Fig. 19. The neutrino mass matrix is then

(Mν)ij =
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where the function F is defined in Ref. [359]. This matrix is, however, only rank one and thus

can give exactly one nonzero neutrino mass. Adding more copies of N can increase the rank of

the matrix. The phenomenology of this model including flavor physics, dark matter, Higgs decay,

electroweak phase transition and collider searches is discussed in detail in Ref. [359].

This model is subject to constraints from LFV experiments such as µ → eγ which requires

three copies of N for the neutrino mixing to be in agreement with the observations.31 Meanwhile

in order to be consistent with the measurements of muon anomalous magnetic moment and the

31 Less copies of N means less contribution to the neutrino mass matrix, which in turn generally leads to larger

Yukawa couplings to generate the same neutrino mass scale and thus more likely to violate constraints from LFV

processes.
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in the Zee model.

For the case of the doubly-charged scalar, one can construct the ∆L = 2 term precisely with

two singly-charged scalars h+

VZB ⊂ µZB h+h+(k++)∗ + H.c. . (82)

Notice that no other combination with SM fields exist, given the large electric charge of k++.

In this case, neutrino masses are generated at 2-loop order. This is known as the Zee-Babu

model [76, 605].

These are the simplest radiative models. By using particles that couple to a lepton and a quark

(leptoquarks), one can also have ∆L = 2 interactions and generate neutrino masses at a different

number of loops. In the following, we will discuss the Zee and Zee-Babu models.

5.1.1 The Zee model

In addition to the SM content with a Higgs scalar doublet H, the Zee model [104, 105] contains

an extra Higgs scalar doublet Φ and a singly-charged scalar singlet h+, which is shown in Tab. 6.

It is an example of the operator O2 = LiLjLkecH lϵijϵkl. Several aspects of the phenomenology of

the model have been studied in Refs. [157, 289, 452, 606–620]. While the Zee-Wolfenstein version

where just the SM Higgs doublet couples to the leptons has been excluded by neutrino oscillation

data [156, 157], the most general version of the Zee model in which both couple remains allowed

[158] and has been recently studied in Ref. [91] (see also Refs. [159, 160] for a variant with a

flavor-dependent Z4 symmetry).

The Yukawa Lagrangian is

− LL = L (Y †
1 H + Y †

2 Φ)eR + L̃f Lh+ + H.c. , (83)

where L = (νL, eL)T and eR are the SU(2) lepton doublets and singlets, respectively, and L̃ ≡
iτ2Lc = iτ2CL

T
with τ2 being the second Pauli matrix. Due to Fermi statistics, f is an antisym-

metric Yukawa matrix in flavor space, while Y1 and Y2 are completely general complex Yukawa

matrices. Furthermore, the charged-lepton mass matrix is given by

mE =
v√
2

(cβY †
1 + sβY †

2 ) , (84)

where tan β = sβ/cβ = v2/v1 with ⟨H0⟩ = v1 and ⟨Φ0⟩ = v2 and v2 = v2
1 + v2

2 . Without loss of

generality, one can work in the basis where mE is diagonal.
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where the function F is defined in Ref. [359]. This matrix is, however, only rank one and thus

can give exactly one nonzero neutrino mass. Adding more copies of N can increase the rank of

the matrix. The phenomenology of this model including flavor physics, dark matter, Higgs decay,

electroweak phase transition and collider searches is discussed in detail in Ref. [359].

This model is subject to constraints from LFV experiments such as µ → eγ which requires
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where L = (νL, eL)T and eR are the SU(2) lepton doublets and singlets, respectively, and L̃ ≡
iτ2Lc = iτ2CL

T
with τ2 being the second Pauli matrix. Due to Fermi statistics, f is an antisym-

metric Yukawa matrix in flavor space, while Y1 and Y2 are completely general complex Yukawa

matrices. Furthermore, the charged-lepton mass matrix is given by

mE =
v√
2

(cβY †
1 + sβY †

2 ) , (84)

where tan β = sβ/cβ = v2/v1 with ⟨H0⟩ = v1 and ⟨Φ0⟩ = v2 and v2 = v2
1 + v2

2 . Without loss of

generality, one can work in the basis where mE is diagonal.

55

L L

H H

L ē LēN
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model the charged singlet mixes with the charged component of the doublet. Some of the most

important predictions of the model are due to the presence of the doubly-charged scalar k++.

Firstly, k++ mediates trilepton decays (ℓi → ℓjℓkℓl) at tree-level which unlike, in the Zee model,

are not suppressed by the small charged lepton masses, as well as radiative decays (ℓi → ℓjγ).

Secondly, k++ can be pair-produced at the LHC via Drell-Yan, decaying among other final states

into same-sign leptons which yields a clean experimental signature. See the discussion in Sec. 4.5.
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The first radiative neutrino mass model at 3-loop order is the KNT model [356] which has one

fermionic singlet N and two singly-charged scalars S1,2 in addition to the SM particles. A discrete

Z2 symmetry is imposed, under which only S2 and N are odd. We list the quantum numbers of

the exotic particles in Tab. 8.

The Z2 symmetry forbids the usual type-I seesaw contribution at tree-level. The relevant

Lagrangian is expressed as
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1 + g N ceRS∗

2 +
1

2
MN NT CN + H.c. (90)

+ MS1S1S∗
1 + MS2S2S∗

2 +
1

4
λS(S1S∗

2)2 , (91)

where the flavor indices of f and g are all suppressed. With this setup, neutrino masses are

generated first at 3-loop order as shown in Fig. 19. The neutrino mass matrix is then
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where the function F is defined in Ref. [359]. This matrix is, however, only rank one and thus

can give exactly one nonzero neutrino mass. Adding more copies of N can increase the rank of

the matrix. The phenomenology of this model including flavor physics, dark matter, Higgs decay,

electroweak phase transition and collider searches is discussed in detail in Ref. [359].

This model is subject to constraints from LFV experiments such as µ → eγ which requires

three copies of N for the neutrino mixing to be in agreement with the observations.31 Meanwhile

in order to be consistent with the measurements of muon anomalous magnetic moment and the

31 Less copies of N means less contribution to the neutrino mass matrix, which in turn generally leads to larger

Yukawa couplings to generate the same neutrino mass scale and thus more likely to violate constraints from LFV

processes.
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Notice that no other combination with SM fields exist, given the large electric charge of k++.
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iτ2Lc = iτ2CL

T
with τ2 being the second Pauli matrix. Due to Fermi statistics, f is an antisym-
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model the charged singlet mixes with the charged component of the doublet. Some of the most

important predictions of the model are due to the presence of the doubly-charged scalar k++.

Firstly, k++ mediates trilepton decays (ℓi → ℓjℓkℓl) at tree-level which unlike, in the Zee model,

are not suppressed by the small charged lepton masses, as well as radiative decays (ℓi → ℓjγ).

Secondly, k++ can be pair-produced at the LHC via Drell-Yan, decaying among other final states
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where the function F is defined in Ref. [359]. This matrix is, however, only rank one and thus

can give exactly one nonzero neutrino mass. Adding more copies of N can increase the rank of

the matrix. The phenomenology of this model including flavor physics, dark matter, Higgs decay,

electroweak phase transition and collider searches is discussed in detail in Ref. [359].

This model is subject to constraints from LFV experiments such as µ → eγ which requires

three copies of N for the neutrino mixing to be in agreement with the observations.31 Meanwhile
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Notice that no other combination with SM fields exist, given the large electric charge of k++.
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(leptoquarks), one can also have ∆L = 2 interactions and generate neutrino masses at a different
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Firstly, k++ mediates trilepton decays (ℓi → ℓjℓkℓl) at tree-level which unlike, in the Zee model,

are not suppressed by the small charged lepton masses, as well as radiative decays (ℓi → ℓjγ).
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model [76, 605].

These are the simplest radiative models. By using particles that couple to a lepton and a quark

(leptoquarks), one can also have ∆L = 2 interactions and generate neutrino masses at a different

number of loops. In the following, we will discuss the Zee and Zee-Babu models.

5.1.1 The Zee model

In addition to the SM content with a Higgs scalar doublet H, the Zee model [104, 105] contains

an extra Higgs scalar doublet Φ and a singly-charged scalar singlet h+, which is shown in Tab. 6.

It is an example of the operator O2 = LiLjLkecH lϵijϵkl. Several aspects of the phenomenology of

the model have been studied in Refs. [157, 289, 452, 606–620]. While the Zee-Wolfenstein version

where just the SM Higgs doublet couples to the leptons has been excluded by neutrino oscillation

data [156, 157], the most general version of the Zee model in which both couple remains allowed

[158] and has been recently studied in Ref. [91] (see also Refs. [159, 160] for a variant with a

flavor-dependent Z4 symmetry).

The Yukawa Lagrangian is

− LL = L (Y †
1 H + Y †

2 Φ)eR + L̃f Lh+ + H.c. , (83)

where L = (νL, eL)T and eR are the SU(2) lepton doublets and singlets, respectively, and L̃ ≡
iτ2Lc = iτ2CL

T
with τ2 being the second Pauli matrix. Due to Fermi statistics, f is an antisym-

metric Yukawa matrix in flavor space, while Y1 and Y2 are completely general complex Yukawa

matrices. Furthermore, the charged-lepton mass matrix is given by

mE =
v√
2

(cβY †
1 + sβY †

2 ) , (84)

where tan β = sβ/cβ = v2/v1 with ⟨H0⟩ = v1 and ⟨Φ0⟩ = v2 and v2 = v2
1 + v2

2 . Without loss of

generality, one can work in the basis where mE is diagonal.
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Figure 19: 3-loop neutrino masses generated

in the KNT model.

Field Spin GSM Z2

S1 0 (1, 1, −1) +

S2 0 (1, 1, −1) −

N 1
2 (1, 1, 0) −

Table 8: Quantum numbers for new particles

in the original KNT model.

model the charged singlet mixes with the charged component of the doublet. Some of the most

important predictions of the model are due to the presence of the doubly-charged scalar k++.

Firstly, k++ mediates trilepton decays (ℓi → ℓjℓkℓl) at tree-level which unlike, in the Zee model,

are not suppressed by the small charged lepton masses, as well as radiative decays (ℓi → ℓjγ).

Secondly, k++ can be pair-produced at the LHC via Drell-Yan, decaying among other final states

into same-sign leptons which yields a clean experimental signature. See the discussion in Sec. 4.5.

5.2 KNT-models

The first radiative neutrino mass model at 3-loop order is the KNT model [356] which has one

fermionic singlet N and two singly-charged scalars S1,2 in addition to the SM particles. A discrete

Z2 symmetry is imposed, under which only S2 and N are odd. We list the quantum numbers of

the exotic particles in Tab. 8.

The Z2 symmetry forbids the usual type-I seesaw contribution at tree-level. The relevant

Lagrangian is expressed as

L = f LT Ciτ2LS∗
1 + g N ceRS∗

2 +
1

2
MN NT CN + H.c. (90)

+ MS1S1S∗
1 + MS2S2S∗

2 +
1

4
λS(S1S∗

2)2 , (91)

where the flavor indices of f and g are all suppressed. With this setup, neutrino masses are

generated first at 3-loop order as shown in Fig. 19. The neutrino mass matrix is then

(Mν)ij =
∑

αβ

λS

(4π2)3

mαmβ

MS2

fiαfjβg∗
αg∗

βF

(
M2

N

M2
S2

,
M2

S1

M2
S2

)

, (92)

where the function F is defined in Ref. [359]. This matrix is, however, only rank one and thus

can give exactly one nonzero neutrino mass. Adding more copies of N can increase the rank of

the matrix. The phenomenology of this model including flavor physics, dark matter, Higgs decay,

electroweak phase transition and collider searches is discussed in detail in Ref. [359].

This model is subject to constraints from LFV experiments such as µ → eγ which requires

three copies of N for the neutrino mixing to be in agreement with the observations.31 Meanwhile

in order to be consistent with the measurements of muon anomalous magnetic moment and the

31 Less copies of N means less contribution to the neutrino mass matrix, which in turn generally leads to larger

Yukawa couplings to generate the same neutrino mass scale and thus more likely to violate constraints from LFV

processes.
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Beyond the Standard Model: hints at LFUV?
~2.5σ deviations from the SM Lepton Flavour Universality in B meson decays New physics ?
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Previous RKú and RK results (LHCb Run 1 data)
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Phenomenological bottom-up approach to LFUV

Neutrino masses 
& oscillation data

Motivation
Constraints/Predictions

Unification? 
Baryogenesis? Collider 

EDM?

Simplest working solutions for LFUV anomalies :  
Scalar leptoquark triplet: (3, 3, 1/3);  Vector leptoquark singlet: (3, 1, 2/3); …

SM+ Scalar LQ triplet + 
??

 9
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Our model: SM + 2 Scalar LQ + Triplet Majorana fermions

 symmetry makes lightest ΣR stable, and forbids type III seesaw  
→ ν masses « feel » B anomalies 

Couplings:

 10

(3 gen.)

A rôle for each BSM field: 
→ contains DM candidate

→ controls B-anomalies
→ allows KNT ν masses

ignored (not needed)

� �h(h1.h2)
2
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Radiative neutrino masses and parametrisation

Using this parametrisation allows to fit oscillation data…

 is a complex orthogonal 
matrix determining  ̃y

A parameterisation à la Casas-Ibarra

 11
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Radiative neutrino masses and parametrisation

Using this parametrisation allows to fit oscillation data…

 is a complex orthogonal 
matrix determining  ̃y

A parameterisation à la Casas-Ibarra
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�h



Jean Orloff GdRν’19@CENBG

A viable dark matter candidate

Z2 symmetry => ΣR is odd => 

Σ0 (the lightest "exotic" stable state) = dark matter candidate

m(Σ±) − m(Σ0) ∼ 166 MeV  Electroweak radiative corrections:

ΣR co-annihilate via gauge interactions

Cirelli, Fornengo, Strumia’06

s-channel

t-channel

 12

MΣ (GeV) ∼ 2500

Ω
h2
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Neutral current anomalies:  RK and RK*  

Taking

Relevant operators for: 

the 1σ  best fit to RK and RK* data

see e.g. Hiller, Nisandzic 2017,  Capdevila et al. 2018 
Hurth et al. 2016, Bečirević et al. 2015, …
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Charged current anomalies:  RD and RD∗ 

=

Using

~ SM like after taking into account 
 the constraints from flavour changing process

Belle Collaboration:

If this signal is confirmed, this minimal model needs to be extended!   

 Eg: include additional leptoquark  R2 = (3, 2, 7/6) / S1= (3, 1, 1/3) ? See for example:  Becirevic et al. 18  
 Crivellin et al. 17  14



Jean Orloff GdRν’19@CENBG

Details: flavour structure of scalar triplet LQ 

To select a benchmark , we parametrise RK(∗) data best fit value as  (mh1 ∼ 1.5 TeV)

=>      ∼ 0.215

How to implement a flavour structure for  ?y

Textures consistent with all the constraints from flavour violation:

! ∼

Hierarchy parameter inspired by  
Froggatt-Nielsen/flavour symmetry/… 

amongst the most  
stringent constraints 
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Prospects for flavour violating (LFV) processes 
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Exciting possibilities to probe leptoquark coupling textures at experiments!
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Connection between LFUV and charged LFV

��[μ→� γ] ��[μ→���] ��[μ-����]

��[� +→π +νν ]

2000 4000 6000 8000 10000
10-15

10-13

10-11

10-9

mh1 (GeV)

The textures give direct correlations between LFUV data with charged LFV

Current upper bounds (solid colors) on Charged LFV processes translates into  
an upper bound on leptoquark masses within collider reach
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Impose neutrino oscillation data

‣  
Three generations mΣ  : 2.5, 3.5, 4.5 TeV  

Global best fit values for 
other oscillation parameters

Scan for y,R consistent with 

perturbativity:  y, ỹ & 4⇡
y, ỹ . 4⇡

Lightest neutrino mass 0.001 eV 

Ruled out !

3 TeV 
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Concluding Remarks
We considered a simple scalar leptoquark extension 
 [SM + 2 Scalar LQ + Triplet Majorana fermion (3 gen)] allowing to: 

1. Accommodate the latest data on neutrino oscillation parameters 

2. Explain the RK(∗) anomalies 

3. Account for a correct relic abundance for dark matter 

4. Consistent with the bounds on the leptoquark couplings from the relevant leptonic 
and semi-leptonic meson decays, neutral meson anti-meson oscillations, and CLFV 
processes 

5. Exciting prospects for probing the model in future CLFV experiments:  
✴ µ−e conversion in nuclei and radiative decays µ → eγ, τ → µγ, eγ, µ → 3e and τ → 3µ 

‣ Open issues: 
✴Consistent UV completion ? 
✴ Implementing a mechanism for baryogenesis 
✴Computation of EDMs (two-loop)   

Source: Symmetry
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Backup I: Full Lagrangian
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Backup II: Relevant Lagrangian for neutrino masses

U  is the PMNS mixing matrix

is a  complex orthogonal matrix 

νL νCL
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dCL dLdCR dRΣ0

(a)
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Backup III: Dark matter co-annihilation channels

t-channels-channel
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Backup IV:Some important constraints from the mesonic observables
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Backup V: LFV: current limits and future sensitivities

Conversion
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