SuperNEMO A unique tracking approach for DBD studies

GDR Neutrino - Bordeaux

Christine Marquet

29th October 2019

2β0v mechanisms

« Neutrinoless double beta decay » Erik Minter, USA

 $2\beta 2\nu$

(A,Z)
$$\rightarrow$$
 (A, Z+2) + 2 e^- + 2 \overline{v}_e

Allowed by the Standard Model $T_{1/2}^{2\nu} \sim 10^{18-24}$ ans

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

 ν Majorana m_v≠0 Δ L=2 Δ (B-L)=2

Beyond the Standard Model

If light neutrino exchange : $T_{1/2} = f(m_{\beta\beta}^2) > 10^{25-26}$ ans

 $\mathbf{m}_{\beta\beta} = |\Sigma \mathbf{U}_{ei} \mathbf{m}_i|$

Christine Marquet

Christine Marquet

$$T_{1/2}^{-1} = (g_{A_{i}}^{\text{eff}})^{4} G_{i}^{0\nu} |M_{i}^{0\nu}|^{2} \varepsilon_{i}^{2}$$

Which New Physics ?

Which New Physics ? Which isotope ?

Experimental approaches

« Triumph Neutrino » Roman Bonchuk, Ukraine 2018

(A,Z)
$$\longrightarrow$$
 (A,Z+2) + 2 e⁻ (+ J, γ)

$$\mathbf{T}_{1/2}^{-1} = g_{A_{i}}^{\text{eff}} G_{i}^{0\nu} |M_{i}^{0\nu}|^{2} \varepsilon_{i}^{2}$$

 $\mathbf{T}_{1/2}^{-1} = g_{A_{i}}^{\text{eff}} G_{i}^{0\nu} |M_{i}^{0\nu}|^{2} \boldsymbol{\varepsilon}_{i}^{2}$

(A,Z)
$$\longrightarrow$$
 (A,Z+2) + 2 e⁻ (+ J, γ)

(A,Z)
$$\longrightarrow$$
 (A,Z+2) + 2 e⁻ (+ J, γ)

Mechanism *i* d Light neutrino V-A U e V+A SUSY Rp $v = \overline{v}$ e **Majoron J** U d **Excited states** Events Theory Theory

0.8

0.6

0.4

0.2

<u>в</u>

Reconstructed (SN

 ΔE_{e}

0.5

$$\mathbf{T_{1/2}^{-1}} = g_{A_{i}}^{\text{eff}} G_{i}^{0\nu} |M_{i}^{0\nu}|^{2} \boldsymbol{\varepsilon}_{i}^{2}$$

$\textbf{Observables} \rightarrow Pa$	arameter ε _έ
$\mathbf{E_{e1}}\textbf{+}\mathbf{E_{e2}}\textbf{,}\ \mathbf{E_{e1}}\textbf{,}\ \mathbf{E_{e2}}\textbf{,}\ \boldsymbol{\theta}$	m _{ββ}
$E_{e1}+E_{e2}$, E_{e1} , E_{e2} , θ	<λ><η>
E _{e1} +E _{e2}	λ ² ′ ₁₁₁
E _{e1} + E _{e2}	<gj></gj>
E_{e1}+E_{e2}	

2

Difference in energy of electrons (MeV)

2.5

1.5

1

Events 1

0.8

0.6

0.4

0.2

Reconstructed (SN)

0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Cosine of angle between electrons

cosθ

(A,Z)
$$\longrightarrow$$
 (A,Z+2) + 2 e⁻ (+ J, γ)

Mechanism *i*

Excited states

$$\mathbf{T_{1/2}^{-1}} = g_{A_{i}}^{\text{eff}} G_{i}^{0\nu} |M_{i}^{0\nu}|^{2} \varepsilon_{i}^{2}$$

$\mathbf{Observables} \rightarrow$	Parameter $\boldsymbol{\varepsilon}_i$
$\mathbf{E_{e1}}\textbf{+}\mathbf{E_{e2}}\textbf{,} \mathbf{E_{e1}}\textbf{,} \mathbf{E_{e2}}\textbf{,} \boldsymbol{\theta}$	m _{ββ}
$\mathbf{E_{e1}}\textbf{+}\mathbf{E_{e2}}\textbf{,} \mathbf{E_{e1}}\textbf{,} \mathbf{E_{e2}}\textbf{,} \boldsymbol{\theta}$	<λ><η>
E _{e1} +E _{e2}	$\lambda^{2'}$ 111
E _{e1} +E _{e2}	<g<sub>j></g<sub>
E _{e1} +E _{e2}	

(A,Z)
$$\longrightarrow$$
 (A,Z+2) + 2 e⁻ (+ J, γ)

Mechanism *i*

Excited states

$$\mathbf{T}_{1/2}^{-1} = g_{A_{i}}^{\text{eff}} G_{i}^{0\nu} |M_{i}^{0\nu}|^{2} \varepsilon_{i}^{2}$$

$\begin{array}{l} \textbf{Observables} \rightarrow \textbf{Parameter} \ \textbf{E}_{i} \\ \textbf{E}_{e1} + \textbf{E}_{e2}, \ \textbf{E}_{e1}, \ \textbf{E}_{e2}, \ \theta & \textbf{m}_{\beta\beta} \\ \textbf{E}_{e1} + \textbf{E}_{e2}, \ \textbf{E}_{e1}, \ \textbf{E}_{e2}, \ \theta & <\lambda > <\eta > \\ \textbf{E}_{e1} + \textbf{E}_{e2} & \lambda^{2'}_{111} \\ \textbf{E}_{e1} + \textbf{E}_{e2} & <\textbf{g}_{j} > \\ \textbf{E}_{e1} + \textbf{E}_{e2}, \ \textbf{E}_{y1}, \ \textbf{E}_{y2} \\ \end{array}$

90/Up 2β0ν 2β2ν 200 150 100 50 0 2500 0 500 1000 1500 2000 3000 Energie Ee1+Ee2 (keV)

$$T_{1/2}^{2\beta0\nu}$$
 > ln 2 × ϵ × ΔT × $\frac{N_A m}{A N_{exc}}$

Sensitivity

Tracking calorimeter technique

Mechanisms	Techniques	SuperNEMO
------------	------------	------------------

- Particle (e^{\pm} , γ , α) identification
- Kinematic : $E_{individual}$, θ , tof

--- Event topology

- Golden event » 2e
- Background modelisation
 - \geq 2 β 0v mechanisms
 - $\geq 2\beta 2v$ precise measurements
- Source separated from detector —— (almost) all isotopes
- Poorer efficiency & energy resolution than "homogeneous" detectors

Located in Modane underground Laboratory (LSM) at ~4800 m.w.e

CENBG (Bordeaux), CPPM (Marseille), Charles U. (Prague), Comenius U. (Bratislava), CTU (Prague), INL (Idaho Falls), Imperial College (London), ITEP (Moscow), JINR (Dubna), LSM (Modane), LPC (Caen), LAL (Orsay), LAPP (Annecy), INR (Kiev), Osaka U. (Osaka), Manchester U. (Manchester), Texas U. (Austin), UCL (London), Jyväskylä U. (Jyväskylä), Warwick U. (Warwick), Werc (Fukui)

Particle identification

Simulated $\beta\beta$ event in SuperNEMO

Event topology

Mechanisms Techniques SuperNEMO

First measured track (half-detector commissioning)

NEMO physics potential

« Stefano Torre, UCL 2014

Mechanisms Techniques SuperNEMO

$$T_{1/2}^{2\beta0\nu}$$
 > ln 2 × ϵ × ΔT × $\frac{N_A m}{A N_{exc}}$

	NEMO-3	SuperNEMO
Isotope	¹⁰⁰ Mo	82 Se (¹⁵⁰ Nd, ⁹⁶ Zr, ⁴⁸ Ca)
Mass (kg)	7	~ 100
Efficiency ROI (%)	8,5	15
BKG(evts/(keV.kg.y))	1,1 x 10 ⁻³	8,5 x 10 ⁻⁵
Energy resolution (%) FWHM à 1 MeV	13,4-19,8	8
208TI sources (µBq/kg)	90 ^{<i>m</i>} - 130 ^{<i>c</i>}	< 2
214Bi sources (µBq/kg)	60 ^m – 310 ^c	< 10
222Rn gas (mBq/m ³)	6,5	< 0,15
Τ ^{2β0ν} _{1/2} 90%CL (y)	> 1,1 x 10 ²⁴	> 10 ²⁶
$\mathbf{m}_{\beta\beta}$ 90%CL (eV)	< 0,33 – 0,62	< 0,05

m : métallique, c : composite

Mechanisms Techniques SuperNEMO

 $T_{1/2}^{2\beta0\nu}$ > ln 2 × ϵ × ΔT × $\frac{N_A m}{A N_{exc}}$

See Cloé's talk

	NEMO-3	SuperNE	SuperNEMO -demo		
lsotope	¹⁰⁰ Mo	⁸² Se (¹⁵⁰ Nd, ⁹⁶ Zr, ⁴⁸ Ca)	⁸² Se	~	
Mass (kg)	7	~ 100	6,3	~	
Efficiency ROI (%)	8,5	15	15	\checkmark	
BKG(evts/(keV.kg.y))	1,1 x 10 ⁻³	8,5 x 10 -5	8,5 x 10 ⁻⁵		
Energy resolution (%) FWHM à 1 MeV	13,4-19,8	8	8	\checkmark	
208TI sources (µBq/kg)	90 ^m – 130 ^c	< 2	< 2	20	
²¹⁴ Bi sources (μBq/kg)	60 ^m – 310 ^c	< 10	< 10	<300	
222Rn gas (mBq/m ³)	6,5	< 0,15	< 0,15	0,16	
Τ^{2β0ν} 90%CL (y)	> 1,1 x 10 ²⁴	> 10 ²⁶	> 5,7 x 10 ²⁴	1	
m _{ββ} 90%CL (eV)	< 0,33 – 0,62	< 0,05	<0,25-0,50		

m : métallique, c : composite

$$m_{\beta\beta} = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{2i\alpha_2} + m_3|U_{e3}|^2 e^{2i\alpha_3} |$$

$$m_{\beta\beta} = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{2i\alpha_2} + m_3|U_{e3}|^2 e^{2i\alpha_3} |$$

$$m_{\beta\beta} = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{2i\alpha_2} + m_3|U_{e3}|^2 e^{2i\alpha_3} |$$

$$m_{\beta\beta} = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 e^{2i\alpha_2} + m_3|U_{e3}|^2 e^{2i\alpha_3} |$$

Mechanisms Techniques SuperNEMO

SuperNEMO sensitivity

Mechanisms Techniques SuperNEMO

SuperNEMO sensitivity

Mode n=1, 2	β	0 v	J
--------------------	---	------------	---

Isotope	$\langle g_J \rangle \ (10^{-5})$	Expérience
	90% C.L.	
76 Ge	3,4 - 8,7	GERDA
82 Se	3,2 - 8,5	NEMO3
^{100}Mo	1,6 - 3,0	NEMO3 7kg !
^{116}Cd	4,6 - 8,1	SOLOTVINA
130 Te	6 - 16	NEMO3
136 Xe	0,8 - 1,6	KamLAND-zen 380 kg
150 Nd	3,8 - 14,4	NEMO3

Phys. Rev. D 92 (2015) 072011

Other	her modes:		her modes: NEMO3		NEMO3	EXO-200	GERDA	
	n	Mode	¹⁰⁰ Mo	¹³⁶ Xe	⁷⁶ Ge			
	n = 3	χ^0	0.013-0.035	0.06	0.047			
	n = 3	$\chi^0 \chi^0$	0.59–5.9	0.6–5.5	0.7-6.6			
	n = 7	$\chi^0 \chi^0$	0.48-4.8	0.4-4.7	0.8–7.1			

Eur. Phys. J. C 79, 440 (2019)

Isotope	$\langle \lambda \rangle \ (10^{-6})$	$\langle \eta \rangle \ (10^{-8})$	Experience
	90% C.L.	90% C.L.	
76 Ge	$1,\!1$	$0,\!64$	Heidelberg-Moscow
82 Se	2,2-2,6	1,7-2,1	NEMO3
^{100}Mo	0,9-1,3	0,5-0,8	NEMO3
116 Cd	2,2	2,5	SOLOTVINA
130 Te	$1,\!6-2,\!4$	0,9-5,3	Mi-Beta
136 Xe	$4,\!4$	$2,\!3$	Gotthard

Exotic modes: $4\beta 0\nu$

Neutrinoless quadruple beta decay

- Proposed by Heeck and Rodejohann Europhys. Lett. 103, (2013) 32001
- Lepton number violating process
- Dirac neutrinos & $0v2\beta$ forbidden
- Best candidate: 150 Nd $\rightarrow {}^{150}$ Gd + 4e Q_{4 β}=2.079 MeV

Phys. Rev. Lett. 119 (2017) 041801

NEMO3 : **5 10**⁵ 2β2ν events (34.3 kg.y of ¹⁰⁰Mo)

First precise measurement of the angular distribution

Eur. Phys. J. C 79, 440 (2019)

S/B=79

$2\beta 2\nu$ precision measurements: SSD/HSD

Mechanisms Techniques **SuperNEMO**

HSD mechanism rejected from ¹⁰⁰Mo single e⁻ spectra

Eur. Phys. J. C 79, 440 (2019)

Mechanisms Techniques SuperNEMO

$$T_{1/2}^{-1} = (\mathbf{g}_{A_{i}}^{\text{eff}})^{4} G_{i}^{0\nu} |M_{i}^{0\nu}|^{2} \varepsilon_{i}^{2}$$

Quenching value of gA for $2\beta0\nu$?

- g_A =1Pure leptonic : muon decayg_A =1.27Free nucleon (from neutron decay)
- $g_A < 1.27$ Nucleus $g_A \sim 0.6-0.9$ for β decay

Can we constrain g_A^{eff} value for $2\beta 0\nu$?

Mechanisms Techniques **SuperNEMO**

$$\mathbf{T}_{1/2}^{-1} = (\mathbf{g}_{A_{i}}^{\text{eff}})^{4} \mathbf{G}_{i}^{0\nu} |\mathbf{M}_{i}^{0\nu}|^{2} \varepsilon_{i}^{2}$$

2018: $2\beta 2\nu$ half-life development proposed by F. Simkovic

Phys. Rev. C 97, 034315 (2018)

Sensitive to the lower energy intermediate states

$$(T_{1/2}^{2\nu})^{-1} \simeq (g_A^{eff,2\nu})^4 \ |(\ M_{GT}^{2\nu})^2 G^{2\nu} + \ M_{GT}^{2\nu} M_{GT-3}^{2\nu} G_2^{2\nu}|$$

Mechanisms Techniques SuperNEMO

$$\mathbf{T}_{1/2}^{-1} = (\mathbf{g}_{A_{i}}^{\text{eff}})^{4} \mathbf{G}_{i}^{0\nu} |\mathbf{M}_{i}^{0\nu}|^{2} \varepsilon_{i}^{2}$$

2018: $2\beta 2\nu$ half-life development proposed by F. Simkovic *Phys. Rev.*

Phys. Rev. C 97, 034315 (2018)

Sensitive to the lower energy intermediate states

states of the intermediate nucleus
=> Experimentally accessible by the
electron energy distribution !

Phys. Rev. C 97, 034315 (2018)

Mechanisms Techniques SuperNEMO

$$\mathbf{T}_{1/2}^{-1} = (\mathbf{g}_{A_{i}}^{\text{eff}})^{4} \mathbf{G}_{i}^{0\nu} |\mathbf{M}_{i}^{0\nu}|^{2} \varepsilon_{i}^{2}$$

2018: $2\beta 2\nu$ half-life development proposed by F. Simkovic

Phys. Rev. C 97, 034315 (2018)

$$\begin{aligned} \left(T_{1/2}^{2\nu}\right)^{-1} &\simeq \left(g_A^{eff,2\nu}\right)^4 \ \left|\left(M_{GT}^{2\nu}\right)^2 G^{2\nu} + \ M_{GT}^{2\nu} \ M_{GT-3}^{2\nu} G_2^{2\nu}\right| \\ &= \left(g_A^{eff,2\nu}\right)^4 \ \left|M_{GT-3}^{2\nu}\right|^2 \ \frac{1}{|\xi_{31}^{2\nu}|^2} \ \left|G^{2\nu} + \xi_{31}^{2\nu} G_2^{2\nu}\right| \end{aligned}$$

Observables

Mechanisms Techniques SuperNEMO

$$\mathbf{T}_{1/2}^{-1} = (\mathbf{g}_{A_{i}}^{\text{eff}})^{4} \mathbf{G}_{i}^{0\nu} |\mathbf{M}_{i}^{0\nu}|^{2} \varepsilon_{i}^{2}$$

2018: $2\beta 2\nu$ half-life development proposed by F. Simkovic

Phys. Rev. C 97, 034315 (2018)

$$\begin{split} \left(T_{1/2}^{2\nu}\right)^{-1} &\simeq \left(g_A^{eff,2\nu}\right)^4 \ \left|\left(M_{GT}^{2\nu}\right)^2 G^{2\nu} + M_{GT}^{2\nu} M_{GT-3}^{2\nu} G_2^{2\nu}\right| \\ \left(T_{1/2}^{2\nu}\right)^{-1} &= \left(g_A^{eff,2\nu}\right)^4 \left|M_{GT-3}^{2\nu}\right|^2 \frac{1}{|\xi_{31}^{2\nu}|^2} \left|G^{2\nu} + \xi_{31}^{2\nu} G_2^{2\nu}\right| \\ g_A^{eff,2\nu} &= f\left(\xi_{31}^{2\nu}, T_{1/2}^{2\nu}, \frac{1}{\sqrt{M_{GT-3}^{2\nu}}}\right) \end{split}$$

Mechanisms

Techniques

SuperNEMO

Mechanisms Techniques SuperNEMO

KamLAND-Zen study

Advantages of NEMO3/SuperNEMO:

✓ Individual energy + angular correlation
 ✓ SSD Isotopes (higher & contribution)

SuperNEMO Phase 2: Other isotope ? ⁹⁶Zr, ¹⁵⁰Nd ?

Enrichment under progress in Russia : new centrifugation method Sensitivity of 6kg 150 Nd \sim 12 kg 82 Se

SuperNEMO Phase 3 : Can the technique be extended to a 100 kg scale ?

Best technique for exploring a signal ! R&D on the compactness (cost, efficiency...) Feedback from the demonstrator construction & running

CONCLUSIONS

SuperNEMO : a unique tracker-calorimeter experiment

- 2 electron visualisation: DBD « smoking gun » evidence
- Unique sensitivity on the identification of the **DBD mechanism**: light neutrino, V+A, SUSY, Majoron, excited states...
- 2β2ν precision measurement & exotic process: HSD/SSD, gA, bosonic neutrinos, excited states, 4β

SuperNEMO demonstrator : final commissioning See Cloe's talk

- Most precise study of ⁸²Se (6kg)
- New isotopes like ¹⁵⁰Nd, ⁹⁶Zr are considered
- Can the technique be extended to confirm a signal anywhere in the IH region ? R&D and isotope developments can point the way

SuperNEMO R&D results in new technical improvements. For example:

- Radiopurity control : BiPo detector, HPGe, Radon set-up (emanantion, concentration, diffusion)
- **Source** enrichment, purification methods
- Development of **new material** : radiopure glass, PS scintillators

¹⁰⁰ Mo	0 v	V+A	J	SUSY	2ν	0/2 √*
⁸² Se	0ν	V+A	J	SUSY	2ν	0/ <mark>2</mark> v*
¹³⁰ Te	0ν		J	SUSY	2ν	
¹¹⁶ Cd	0ν	V+A	J	SUSY	2ν	
¹⁵⁰ Nd	0ν	V+A	J	SUSY	2ν	4 β 0 ν
⁹⁶ Zr	0ν	V+A	J	SUSY	2ν	
⁴⁸ Ca	0ν	V+A	J	SUSY	2ν	
m _{ββ} < λ> <η> <g,> λ΄</g,> ₁₁₁ World's Best						
20 publications, 20(/55) citations PDG2018						

