Status and results of CONUS

Aurélie Bonhomme Max-Planck-Institut für Kernphysik, Heidelberg on behalf of the CONUS collaboration

GDR Neutrino meeting - 29 Oct. 2019

Coherent Elastic Neutrino Nucleus Scattering ($CE\nu NS$)

Predicted in 1974 by Freedmann: for low momentum transfer, interaction with the nucleus as a whole → cross-section enhancement

full coherency feature: $\sigma \propto N^2$ $\sin^2(\theta_w) \sim 0.238$ at low energies and F(q²)~1 fully coherent for $E_{\nu} \lesssim 30 \text{ MeV}$

 only observable experimentally accessible: low energy recoil of the nucleus! T_{max} α 1/A ⇒ very low energy threshold required!

Coherent Elastic Neutrino Nucleus Scattering ($CE\nu NS$)

Predicted in 1974 by Freedmann: for low momentum transfer, interaction with the nucleus as a whole → cross-section enhancement

full coherency feature: $\sigma \propto N^2 \sin^2(\theta_w) \sim 0.238$ at low energies and F(q²)~1 fully coherent for $E_{\nu} \lesssim 30 \text{ MeV}$

 only observable experimentally accessible: low energy recoil of the nucleus! T_{max} α 1/A ⇒ very low energy threshold required!

Detecting CE ν NS: neutrino sources

2017: first CE∠NS observation: COHERENT experiment Akimov et al., Science, 357, 6356, (2017)

Reactor neutrinos

- $\bar{\nu}_e$ from β -decays of fissile isotopes
 - very intense flux
 - almost fully coherent

challenges: neutrons, flux prediction, environmental instabilities

Accelerator neutrinos (π -decay at rest)

pulsed GeV-proton beam, multiple ν flavors

- larger cross-section...
- ...but loss of coherency

challenges: neutrino-induced neutrons, flux prediction, small overburden

complementary approaches!

Aurélie Bonhomme (MPIK)

Status and results of CONUS

Detecting CE ν NS: neutrino sources

2017: first CE∠NS observation: COHERENT experiment Akimov et al., Science, 357, 6356, (2017)

Reactor neutrinos

 $\bar{\nu}_e$ from β -decays of fissile isotopes

- very intense flux
- almost fully coherent

challenges: neutrons, flux prediction, environmental instabilities

Accelerator neutrinos (π -decay at rest)

pulsed GeV-proton beam, multiple ν flavors

- larger cross-section...
- ...but loss of coherency

challenges: neutrino-induced neutrons, flux prediction, small overburden

complementary approaches!

, tarene bonnonnne (nn nt)

Status and results of CONUS

Physics motivations

$CE\nu NS$ as measurement tool...

- SM precision measurements (Weinberg angle)
- nuclear form factor

$CE\nu NS$ in the search for New Physics...

- Neutrino Magnetic Moment
- Non Standard Interactions (NSI)

$CE\nu NS$ at the crossroad of physics...

- Supernova evolution
- Dark Matter searches

$CE\nu NS$ for reactor- $\bar{\nu}_e$ investigations...

- reactor-v
 e spectrum prediction
- nuclear monitoring

Detecting reactor $\bar{\nu}_e$: experimental requirements

- Very low energy thresholds: ~keV recoil + quenching!
- ► Signal statistics → commercial reactors and/or large active masses
- Very low background
 - \rightarrow ultra-pure materials
 - ightarrow passive and active shield
 - \rightarrow efficient background rejection
- ▶ Deep background understanding → on and off site characterization, off-time periods measurements, background modeling...

ONUS experiment:

low threshold HPGe detector

measuring reactor- $\bar{\nu}_e$ from the nuclear power plant in Brokdorf (Germany) within an elaborated shield

Detecting reactor $\bar{\nu}_e$: experimental requirements

- Very low energy thresholds: ~keV recoil + quenching!
- ► Signal statistics → commercial reactors and/or large active masses
- Very low background
 - \rightarrow ultra-pure materials
 - ightarrow passive and active shield
 - \rightarrow efficient background rejection
- ▶ Deep background understanding → on and off site characterization, off-time periods measurements, background modeling...

CONUS experiment:

measuring reactor- $\bar{\nu}_e$ from the nuclear power plant in Brokdorf (Germany) within an elaborated shield

The CONUS collaboration

Collaboration:

A. Bonhomme, C. Buck, J. Hakenmüller, G. Heusser, T. Hugle, M. Lindner, W. Maneschg,

T. Rink, T. Schierhuber, H. Strecker - Max Planck Institut für Kernphysik (MPIK), Heidelberg

K. Fülber, R. Wink - Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf

Scientific cooperation:

M. Reginatto, M. Zboril, A. Zimbal - Physikalisch-Technische Bundesanstalt (PTB), Braunschweig

The CONUS low threshold HPGe detectors

Novel development, cooperation with Mirion:

- p-type point contact HPGe electrical PT cryocoolers, ~ [-180°C, -200°C]
- ▶ 4 × 1 kg crystals, 3.74 kg total active mass
- very low background components
- ▶ pulser resolution (FWHM) < 85 eV → low noise threshold ≤ 300 eV

	pulser FWHM [eV]
C1	74 ± 1
C2	75 ± 1
C3	59 ± 1
C4	74 ± 1

The CONUS experimental site

The Brokdorf nuclear power plant (KBR) in Germany:

- ▶ site @17m from the **3.9 GW**_{th} reactor core $\sqrt{\text{high } \bar{\nu}_e \text{ flux: } 10^{13} \bar{\nu}_e \text{ s}^{-1} \text{cm}^{-2}}$
- ▶ high duty-cycle √ 1 month/year of reactor-off
- shallow-depth site (24 m w.e.)
 x sensitive to cosmic-induced background
- reactor environment
 x potential reactor-induced background

Reactor site: ≠ laboratory conditions! no fresh air supply, changes in environmental conditions, no remote control, no cryogenic liquids allowed, earth quake safety requirements, restricted access...

- Cosmic-induced background μ-induced neutrons in surroundings
- Ambient radioactivity from concrete, radon...
- Neutron activation in Germanium background γ lines from cosmic activation
- Reactor-correlated background neutrons, γ correlated with thermal power!

- Cosmic-induced background μ-induced neutrons in surroundings
- Ambient radioactivity from concrete, radon...
- Neutron activation in Germanium background γ lines from cosmic activation
- Reactor-correlated background neutrons, γ correlated with thermal power!

- Cosmic-induced background μ-induced neutrons in surroundings
- Ambient radioactivity from concrete, radon...
- Neutron activation in Germanium background γ lines from cosmic activation
- Reactor-correlated background neutrons, γ correlated with thermal power!

- Cosmic-induced background μ-induced neutrons in surroundings
- Ambient radioactivity from concrete, radon...
- Neutron activation in Germanium background γ lines from cosmic activation
- Reactor-correlated background neutrons, γ correlated with thermal power!

The CONUS shield

benefits from long studies at MPIK (see e.g. G. Heusser et al., Eur. Phys. J. C (2015) 75: 531)

Inside passive shield:

cosmic-induced remaining background compatible in shape with MPIK lab (15 m w.e.) with similar shield

no shield

Reactor-correlated background

J. Hakenmüller et al., Eur. Phys. J. C. (2019) 79:699

Direct neutron measurement

10 PE (moderator) spheres with 3–12" diameters with ³He counter (n_{th}) at the detector place, for reactor-on/off periods \Rightarrow ambient neutron energy distribution

- thermalized neutron field (\sim 80 % of the total fluence)
- $\blacktriangleright\,$ spatial inhomogeneities up to $\sim\!20\,\%$
- correlated with thermal power

Reactor-correlated background

- J. Hakenmüller et al., Eur. Phys. J. C. (2019) 79:699
 - Indirect measurements (γ) with non shielded HPGe detector

4x more background than in low level labor MPIK (15 m w.e.):

- natural radioactivity (concrete walls, closed atmosphere)
- strong contribution from nitrogen production ¹⁶O(n,p)¹⁶N in cooling cycle
- additional lines from thermal neutron capture on ⁵³Fe, ⁵⁶Fe and ⁶³Cu

Reactor-correlated background

- J. Hakenmüller et al., Eur. Phys. J. C. (2019) 79:699
 - Indirect measurements with non shielded HPGe detector

- 4x more background than in low level labor MPIK (15 m w.e.):
 - natural radioactivity (concrete walls, closed atmosphere)
 - strong contribution from nitrogen production ¹⁶O(n,p)¹⁶N in cooling cycle
 - ▶ additional lines from thermal neutron capture on ⁵³Fe, ⁵⁶Fe and ⁶³Cu

Reactor-correlated background suppression

Propagation of **measured neutron and** γ **spectrum** through shield in MC \Rightarrow estimation of the reactor-correlated background for CONUS

Neutrons

realistic quenching (k=0.2)

one order of magnitude below the signal in the ROI

Energy range [keV _{ee}]	Total (Data) [/kg/d]	Reactor-correlated contribution (MC) [/kg/d]
0.3 - 0.6	12 ± 1	0.013 ± 0.004
0.6 - 11	148 ± 2	0.035 ± 0.006
11 - 400	716 \pm 16	0.13 ± 0.02

High energy γ negligible contribution across 25 cm of Pb: $(11\pm2)\times10^{-5}$ /kg/d in [0, 450] keV_{ee}

 $\Rightarrow \textbf{Negligible reactor-correlated contributions}} \\ \textbf{inside CONUS shield}$

Timeline of CONUS

- Beginning 2018: Installation at KBR
- Apr. 2018 Nov. 2018: Run-1 1 month reactor-off, 6 months reactor-on
- Since May. 2019: Run-2
 1 month reactor-off, 4 months reactor-on up to now

Detector response and stability

Linearity

 \checkmark linearity of the electronic chain with pulser measurements

Energy scale

low energy: use lines produced by Ge isotope decays inside the crystals high energy: regular calibration with $^{\rm 228}{\rm Th}$ source

Stability

 $\checkmark\,$ achieve \pm 5 eV stability of 10.4 keV mean peak position

Sensitivity to environment

 $\blacktriangleright\,$ radon suppression: confined environment $\rightarrow \sim 100\,Bq/m^3$

Reactor site: no N₂ allowed! \Rightarrow flush with breathing air cylinders

- temperature dependence of peak position of the ²²⁸Th peak (excellent energy resolution!)
- mechanical vibrations: detectors highly sensitive

Sensitivity to environment

- ▶ radon suppression: confined environment $ightarrow \sim$ 100 Bq/m³
- **•** temperature dependence of peak position of the ²²⁸Th peak (excellent energy resolution!)
- Reactor site: room temperature changes! \Rightarrow enhanced monitoring, stabilization work
- mechanical vibrations: detectors highly sensitive

Sensitivity to environment

- **radon suppression:** confined environment $\rightarrow \sim 100 \, \text{Bq/m}^3$
- temperature dependence of peak position of the ²²⁸Th peak (excellent energy resolution!)
- mechanical vibrations: detectors highly sensitive

Reactor site: pumps, maintenance... \Rightarrow efficient discrimination with time distribution

Background level in the region of interest

 Only 4 visible activation lines < 12 keV_{ee} decaying contrib. from MC:

 $\lesssim\!0.2\,/kg/d$ in [0.5, 1]keV_{ee}

- \Rightarrow very small + ability to correct
- no correlation observed w.r.t. atm. cond.

\Rightarrow stable background in the ROI

background level in $[0.5 - 1] \text{ keV}_{ee}$: 10 counts/kg/d/keV (comparable to detectors at $\sim 100 \text{ m w.e.}$)

MC contributions: - μ -induced neutrons in shield - 210 Pb from shield contribution - μ -induced neutrons in concrete - contaminations (soldering wires, Rn) - cosmogenic activation 71 Ge, 68 Ge, 65 Zn, 68 Ga

Signal prediction

• Reactor $\bar{\nu}_e$ spectrum prediction:

 $\bar{\nu}_e$ from β -decays of fission fragments: mainly 235 U, 239 Pu, 238 U, and 241 Pu $\bar{\nu}_e$ up to $\sim 10\,\text{MeV}$

$$S(E_{\nu}) = \frac{1}{4\pi L^2} \frac{\langle W_{th} \rangle}{\sum_i \alpha_i E_i} \sum_i \alpha_i \cdot S_i(E_{\nu})$$

- $W_{th}:$ thermal power known at \pm 2.3 %
- α_i : isotopic fission fractions
- $-E_i$: energy per fission

 $-\alpha_i \cdot S_i(E_{\nu})$: energy spectrum per fission for isotope *i*

 \rightarrow use measured $\bar{\nu}_e$ -reactor spectrum (Daya Bay) F. P. An et al., Phys. Rev. Lett. 116, 061801 (2016)

	$< \alpha_i >$	E _i (MeV)
²³⁵ U	0.57	202.36 ± 0.26
²³⁹ Pu	0.30	211.12 ± 0.34
²³⁸ U	0.08	205.99 ± 0.52
²⁴¹ Pu	0.05	214.26 ± 0.33

ionization (measured) \rightarrow quenching factor \rightarrow nuclear recoil energy T quenching factor in Ge is the dominant uncertainty

detector response

Signal prediction

Latest rate analysis result and on-going analysis

Rate only analysis for Run-1 dataset

3 detectors, statistics only in [0.30, 0.55]keVee

on-off		133 ± 130
reactor-on	417 kg.day	2405 ± 49
reactor-off	65 kg.day	354 ± 19

Prediction

for six months of data, expected CE ν NS events for several Lindhard k param.

k	0.15	0.2	0.250
counts	7	41	117

 \checkmark order of magnitude of prediction with realistic quenching

Analysis on-going:

- Extension of current dataset careful data selection
- Spectral shape analysis
- Systematics uncertainties energy scale, detection efficiency, stability...
- Upgrades: pulse shape information

Conclusions and perspectives

- Promising CEνNS neutrino detection channel now experimentally accessible: high flux, very low detection thresholds, efficient background suppression ⇒ beam-/reactor-based experiments are complementary
- CONUS experiment, running since April 2018:
 - low threshold point contact HPGe detectors in sophisticated shield
 - measuring reactor- $\bar{\nu}_e$ from the 3.9 GW_{th} NPP in Brokdorf (Germany)
 - operation in difficult environment

Extensive characterization of backgrounds:

- J. Hakenmüller et al., Eur. Phys. J. C. (2019) 79:699
- ⇒ reactor-correlated backgrounds are negligible
- Latest rate analysis (Run-1): 1σ excess in the ROI

Much more to come:

- analysis extended with new data set
- spectral shape analysis
- systematics
- PSD
- A lot of physics potential!

Thank you for your attention!