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Outline

• ways to correlate leptonic mixing angles and CP phases

• possibilities to fix neutrino masses in addition

• options to relate leptonic CP violation to the quark CP phase



Experimental data

Summary of current knowledge about lepton mixing (NuFIT (’19))

||UPMNS|| ≈







0.82 0.55 0.15

0.31 0.60 0.74

0.48 0.58 0.66






[NO]

and hint for CP violation: δ ≈ 222◦ , α = ? , β = ?



Experimental data

Summary of current knowledge about neutrino masses

Their ordering is un-

known, although NO

seems preferred.

(NuFIT (’19))

Their absolute scale

is also unknown.

(Planck (’18))



Lepton mixing

Examples:

• flavour symmetry Gf and its breaking as explanation

• flavour symmetry Gf and CP and its breaking as explanation



Lepton mixing

Flavour symmetry Gf and its breaking as explanation

(Lam (’07,’08), Blum/H/Lindner (’07))

Gf

ւ ց
charged leptons

Ge

Ue

neutrinos

Gν

Uν

ց ւ

UPMNS = U †
eUν

Note: Masses do not play a role in this approach.



Lepton mixing

You expect to fix

• the 3 lepton mixing angles

• the Dirac phase δ

up to permutations of rows and columns of the

PMNS mixing matrix, since masses are not fixed.



Lepton mixing

You expect to fix

• the 3 lepton mixing angles

• the Dirac phase δ

up to permutations of rows and columns of the

PMNS mixing matrix, since masses are not fixed.

Example for Gf for θ13 6= 0, θ23 6= π
4

(de Adelhart Toorop/Feruglio/H (’11))

• Gf = ∆(384)

• Ge = Z3

• Gν = Z2 × Z2



Lepton mixing

(de Adelhart Toorop/Feruglio/H (’11))

||UPMNS|| ≈









0.81 0.58 0.11

0.31 0.58 0.75

0.50 0.58 0.65









and sin δ = 0

This result is generic.

Non-trivial values of δ

from combination of flavour and CP symmetries.

With less stringent assumptions on flavour (and residual) symme-

tries non-trivial CP violation can also be achieved.

(see e.g. Hernandez/Smirnov (’12))



Lepton mixing

Flavour symmetry Gf and CP and its breaking as explanation

(Feruglio/H/Ziegler (’12))

Gf and CP

ւ ց
charged leptons

Ge

Ue

neutrinos

Gν = Z2 × CP

Uν = ΩνR(θ)Kν

ց ւ

UPMNS = U †
eΩνR(θ)Kν

Note: Masses do not play a role in this approach.



Lepton mixing

You expect to express

• the 3 lepton mixing angles

• all CP phases δ, α and β

in terms of one single real parameter θ and up to permutations of

rows and columns of the PMNS mixing matrix, since one has one

Z2 only and masses are not fixed.



Lepton mixing

You expect to express

• the 3 lepton mixing angles

• all CP phases δ, α and β

in terms of one single real parameter θ and up to permutations of

rows and columns of the PMNS mixing matrix, since one has one

Z2 only and masses are not fixed.

Example: study of series of Gf with CP

(H/Meroni/Molinaro (’14))

• Gf = ∆(3n2),∆(6n2) and CP

• Ge = Z3

• Gν = Z2 × CP

4 different types of mixing patterns with different characteristics



Lepton mixing

(H/Meroni/Molinaro (’14))

• fix θ and choice of Z2 to accommodate lepton mixing angles

• large δ follows

| sin δ| & 0.71

• Majorana phases α, β depend on CP symmetry X(s) only

| sinα| = | sinβ| = | sin 6φs| with φs =
πs

n
and s = 0, ..., n−1



Lepton mixing

(H/Meroni/Molinaro (’14))

• fix θ and choice of Z2 to accommodate lepton mixing angles

• large δ follows

| sin δ| & 0.71

• Majorana phases α, β depend on CP symmetry X(s) only

| sinα| = | sinβ| = | sin 6φs| with φs =
πs

n
and s = 0, ..., n−1

Correlations among lepton mixing angles are

sin2 θ12 =
1

3

(

1− 3 sin2 θ13

1− sin2 θ13

)

and

sin2 θ23 ≈ 1

2
−
√
2 cos

(

3π s

8

)

sin θ13



Lepton mixing

(H/Meroni/Molinaro (’14))

• fix θ and choice of Z2 to accommodate lepton mixing angles

• large δ follows

| sin δ| & 0.71

• Majorana phases α, β depend on CP symmetry X(s) only

| sinα| = | sinβ| = | sin 6φs| with φs =
πs

n
and s = 0, ..., n−1

There are also sum rules for the CP phases

(

1− 2 sin2 θ23
)2 ≈ 8 sin2 θ13 cos2 δ

and

| sinα| = | sinβ| ≈
∣

∣

∣ sin δ

(

1− 2 sin2 θ23√
2 sin θ13

)

∣

∣

∣



Lepton mixing

(H/Meroni/Molinaro (’14))

• fix θ and choice of Z2 to accommodate lepton mixing angles

• large δ follows

| sin δ| & 0.71

• Majorana phases α, β depend on CP symmetry X(s) only

| sinα| = | sinβ| = | sin 6φs| with φs =
πs

n
and s = 0, ..., n−1

for n=8:

s sin2 θ13 sin2 θ12 sin2 θ23 sin δ sinα = sinβ

s = 1 0.0220 0.318 0.579 0.936 −1/
√
2

0.0220 0.318 0.421 −0.936 −1/
√
2

s = 2 0.0216 0.319 0.645 −0.739 1

s = 4 0.0220 0.318 0.5 ∓1 0



Lepton mixing

Results for neutrinoless double beta decay (H/Molinaro (’16))



Beyond lepton mixing

Unflavoured leptogenesis

(H/Molinaro (’16))

• consider scenario with flavour and CP symmetry

and 3 RH neutrinos Ni forming 3

• baryon asymmetry of the Universe

YB = (8.65± 0.09)× 10−11
(Planck (’15))

is generated through unflavoured leptogenesis



Beyond lepton mixing

Unflavoured leptogenesis

(H/Molinaro (’16))

• consider scenario with flavour and CP symmetry

and 3 RH neutrinos Ni forming 3

• YB is generated through unflavoured leptogenesis

• we assume

−YD l̄ HcN − 1

2
N cMRN



Beyond lepton mixing

Unflavoured leptogenesis

(H/Molinaro (’16))

• consider scenario with flavour and CP symmetry

and 3 RH neutrinos Ni forming 3

• YB is generated through unflavoured leptogenesis

• we assume

−YD l̄ HcN − 1

2
N cMRN

• Dirac Yukawa coupling YD invariant under flavour and CP

• RH neutrino mass matrix MR invariant under residual

symmetry Gν
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• consider scenario with flavour and CP symmetry

and 3 RH neutrinos Ni forming 3

• YB is generated through unflavoured leptogenesis

• we assume

• Dirac Yukawa coupling YD invariant under flavour and CP

• RH neutrino mass matrix MR invariant under residual

symmetry Gν

• crucial ingredient: corrections δYD to YD



Beyond lepton mixing

Unflavoured leptogenesis

(H/Molinaro (’16))

• consider scenario with flavour and CP symmetry

and 3 RH neutrinos Ni forming 3

• YB is generated through unflavoured leptogenesis

• we assume

• Dirac Yukawa coupling YD invariant under flavour and CP

• RH neutrino mass matrix MR invariant under residual

symmetry Gν

• crucial ingredient: corrections δYD to YD

Why?

• otherwise no CP asymmetry is achieved

• always arise in explicit models



Beyond lepton mixing

Unflavoured leptogenesis

(H/Molinaro (’16))

For further works on flavour and CP symmetries and leptogenesis

see e.g. Mohapatra/Nishi (’15), Chen/Ding/King (’16).



Neutrino masses and lepton mixing

Examples:

• flavour symmetry Gf (and CP) and its breaking

• modular invariance



Neutrino masses and lepton mixing

Use flavour symmetry Gf (and CP) and its breaking to also con-

strain neutrino mass spectrum,

either one massless neutrino (Joshipura/Patel (’13,’14))

or a pair of degenerate neutrinos (Joshipura/Patel (’14,’15,’18))

Assume in the following neutrinos are Majorana particles.



Neutrino masses and lepton mixing

(Joshipura/Patel (’13,’14))

One massless neutrino

• requires that residual symmetry for neutrinos is larger than Z2

• leads thus to Gf being a subgroup of U(3) rather than SU(3)

• is, however, difficult to reconcile with acceptable lepton mixing



Neutrino masses and lepton mixing

(Joshipura/Patel (’13,’14))

One massless neutrino

• requires that residual symmetry for neutrinos is larger than Z2

• leads thus to Gf being a subgroup of U(3) rather than SU(3)

• is, however, difficult to reconcile with acceptable lepton mixing

I.e. only for

• Gf = [[432, 239]]

• Ge = Z4

• Gν = Z4

a mixing pattern close to experimental data follows.



Neutrino masses and lepton mixing

(Joshipura/Patel (’13,’14))

The mixing pattern is

||UPMNS|| ≈









0.77 0.61 0.18

0.5 0.40 0.77

0.40 0.68 0.61









and δ is trivial.

Neutrinos are normally ordered with m1 = 0.

Degenerate neutrinos always require some correction.



Neutrino masses and lepton mixing

Use modular invariance to fix neutrino masses and lepton mixing

(Feruglio (’17), Criado/Feruglio (’18))

• consider globally supersymmetric theory

• impose modular invariance on this theory, meaning

• the modulus τ transforms as

τ → γ τ =
a τ + b

c τ + d
with ad− bc = 1

• chiral superfields φ(I) transform as

φ(I) → (c τ + d)kI ρ(I)(γ)φ(I)

with kI being the weight, ρ(I) the representation of

ΓN = Γ/Γ(N)



Neutrino masses and lepton mixing

(Feruglio (’17), Criado/Feruglio (’18))

• the superpotential has weight zero and is invariant under ΓN

• Yukawa couplings must be modular forms

(in a representation ρf , with certain (even) weight kf

and of level N )

fi(γ τ) = (c τ + d)kf ρf (γ)ijfj(τ)



Neutrino masses and lepton mixing

(Feruglio (’17), Criado/Feruglio (’18))

• the superpotential has weight zero and is invariant under ΓN

• Yukawa couplings must be modular forms

(in a representation ρf , with certain (even) weight kf

and of level N )

fi(γ τ) = (c τ + d)kf ρf (γ)ijfj(τ)

Choose

• N , e.g. N = 3, meaning Γ3 ≃ A4

• representations ρ(I) of different chiral superfields

• additional fields (flavons), if needed

• weights kI of different chiral superfields



Neutrino masses and lepton mixing

(Feruglio (’17), Criado/Feruglio (’18))

Example:

• charged leptons: L ∼ (3,−1), eci ∼ ([1,1′′,1′],−2), hd ∼ (1, 0)

• flavon ϕ ∼ (3, 3) needed for charged lepton masses

• postulate: 〈ϕ〉 ∝ (1, 0, ǫ)

Me ∝









a 0 c ǫ

a ǫ b 0

0 b ǫ c











Neutrino masses and lepton mixing

(Feruglio (’17), Criado/Feruglio (’18))

Example:

• charged leptons: L ∼ (3,−1), eci ∼ ([1,1′′,1′],−2), hd ∼ (1, 0)

• flavon ϕ ∼ (3, 3) needed for charged lepton masses

• postulate: 〈ϕ〉 ∝ (1, 0, ǫ)

• results: charged lepton masses adjusted by 3 couplings,

small contribution to UPMNS



Neutrino masses and lepton mixing

(Feruglio (’17), Criado/Feruglio (’18))

Example:

• neutrinos get mass from Weinberg operator

• neutrinos: L ∼ (3,−1), hu ∼ (1, 0)

• couplings of Weinberg operator are modular forms with

weight 2 and of level 3,

i.e. 3 holomorphic functions Yi of τ that fulfil constraint Y2(τ)
2 +

2Y1(τ)Y3(τ) = 0

Mν ∝









2Y1(τ) −Y3(τ) −Y2(τ)
−Y3(τ) 2Y2(τ) −Y1(τ)
−Y2(τ) −Y1(τ) 2Y3(τ)









with e.g. Y1(τ) = 1 + 12 q + 36 q2... and q = ei 2π τ .



Neutrino masses and lepton mixing

(Feruglio (’17), Criado/Feruglio (’18))

Example:

• neutrinos get mass from Weinberg operator

• neutrinos: L ∼ (3,−1), hu ∼ (1, 0)

• couplings of Weinberg operator are modular forms with

weight 2 and of level 3,

i.e. 3 holomorphic functions Yi of τ that fulfil constraint

Y2(τ)
2 + 2Y1(τ)Y3(τ) = 0

• postulate: 〈τ〉 ≈ 0.0117 + i 0.9948

• results: neutrino masses are inversely ordered,

all mixing angles are in agreement with data,

δ as well and Majorana phases are also fixed



Neutrino masses and lepton mixing

(Feruglio (’17), Criado/Feruglio (’18))

Example:

Modular symmetries have been combined with CP (Novichkov et al. (’19)).



Connections to quark sector

Same flavour symmetry Gf and CP for leptons and quarks

(H/König (’18))

∆(384) and CP

Gl = Z3 Gν,1 = Gu,1 = Z2 × Z2 × CP G±
d,1 = Z16



Connections to quark sector

Same flavour symmetry Gf and CP for leptons and quarks

(H/König (’18))

∆(384) and CP

Gl = Z3

TB mixing

Gν,1 = Gu,1 = Z2 × Z2 × CP G±
d,1 = Z16

θC = sinπ/16



Connections to quark sector

Same flavour symmetry Gf and CP for leptons and quarks

(H/König (’18))

∆(384) and CP

Gl = Z3

TB mixing

Gν,1 = Gu,1 = Z2 × Z2 × CP

Gν,2 = Z2 × CP Gu,2 = Z2 × CP

G±
d,1 = Z16

θC = sinπ/16



Connections to quark sector

Same flavour symmetry Gf and CP for leptons and quarks

(H/König (’18))

∆(384) and CP

Gl = Z3

TB mixing

Gν,1 = Gu,1 = Z2 × Z2 × CP

Gν,2 = Z2 × CP

θ13 6= 0

Gu,2 = Z2 × CP

|Vus| = 0.22452

G±
d,1 = Z16

θC = sinπ/16



Connections to quark sector

Same flavour symmetry Gf and CP for leptons and quarks

(H/König (’18))

∆(384) and CP

Gl = Z3

TB mixing

Gν,1 = Gu,1 = Z2 × Z2 × CP

Gν,2 = Z2 × CP

θ13 6= 0

Gu,2 = Z2 × CP

CP

|Vus| = 0.22452

G±
d,1 = Z16

no residual

θC = sinπ/16



Connections to quark sector

Same flavour symmetry Gf and CP for leptons and quarks

(H/König (’18))

∆(384) and CP

Gl = Z3

TB mixing

Gν,1 = Gu,1 = Z2 × Z2 × CP

Gν,2 = Z2 × CP

θ13 6= 0

Gu,2 = Z2 × CP

CP

θq23 6= 0

|Vus| = 0.22452

G±
d,1 = Z16

no residual

θq13 6= 0

θC = sinπ/16



Connections to quark sector

Same flavour symmetry Gf and CP for leptons and quarks

(H/König (’18))

Interesting result:

CP violation among quarks is correlated with lepton sector

| sin δq| ≈
∣

∣sin
(

π k
8 + 3π s

8 ∓ π
16 + ψd,13

)∣

∣

where

• input from lepton sector

i) k = 0 is needed for getting TB mixing after 1st step

ii) s = 7 is selected by data on θ23

• ∓ π
16 refers to 2 choices G±

d,1 = Z16

• ψd,13 arises as free parameter from breaking of G±
d,1



Connections to quark sector

Same flavour symmetry Gf and CP for leptons and quarks

(H/König (’18))

Interesting result:

CP violation among quarks is correlated with lepton sector

| sin δq| ≈
∣

∣sin
(

π k
8 + 3π s

8 ∓ π
16 + ψd,13

)∣

∣

Use k = 0 in order to formulate this expression as

sum rule involving δq, θC and δ, θ13, θ23

| sin δq| ≈
∣

∣

∣

∣

sin δ cos (θC ∓ ψd,13)±
(

1− 2 sin2 θ23

2
√
2 sin θ13

)

sin (θC ∓ ψd,13)

∣

∣

∣

∣

and for vanishing ψd,13

| sin δq| ≈
∣

∣

∣

∣

sin δ cos (θC)±
(

1− 2 sin2 θ23

2
√
2 sin θ13

)

sin (θC)

∣

∣

∣

∣



Connections to quark sector

Same flavour symmetry Gf and CP for leptons and quarks

(H/König (’18))

Interesting result:

CP violation among quarks is correlated with lepton sector

| sin δq| ≈
∣

∣sin
(

π k
8 + 3π s

8 ∓ π
16 + ψd,13

)∣

∣

• for k = 0, s = 7 and ψd,13 = 0 we obtain

Jq

CP
≈ 3.29× 10−5 for G+

d,1

Jq

CP
≈ 2.79× 10−5 for G−

d,1

which should be compared to (PDG (’18))

Jq

CP
= (3.18± 0.15)× 10−5

• for small ψd,13 best fit value of Jq

CP
can be achieved



Conclusions

• lepton mixing angles can be understood with the help of

flavour symmetries

• extensions with CP allow to constrain all leptonic CP phases

• further symmetries can fix neutrino masses as well

• eventually, CP violation among leptons and quarks can be

related

Thank you for your attention.
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