

Status of 3-neutrino mass-mixing parameters

based on (Prog. Part. Nucl. Phys. 102 (2018) 48, Phys. Rev. D 95 (2017) no.9, 096014) + oscillation update 2019 in collaboration with E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo

FRANCESCO CAPOZZI

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

In a 3-neutrino framework we have 10 mass and mixing parameters

3 mixing angles

In a 3-neutrino framework we have 10 mass and mixing parameters

CP violation if $\delta \neq 0, \pi$

In a 3-neutrino framework we have 10 mass and mixing parameters

In a 3-neutrino framework we have 10 mass and mixing parameters

$$\Delta m^2 = m^2_3 - (m^2_2 + m^2_1)/2$$

atmospheric mass difference

$$\delta m^2 = m^2_2 - m^2_1 > 0$$

solar mass difference

In a 3-neutrino framework we have 10 mass and mixing parameters

Normal mass ordering (NO): $m_3 > m_2 > m_1$ and $\Delta m^2 > 0$

Inverted mass ordering (IO): $m_2 > m_1 > m_3$ and $\Delta m^2 < 0$

In a 3-neutrino framework we have 10 mass and mixing parameters

In a 3-neutrino framework we have 10 mass and mixing parameters

How do we measure the mass-mixing parameters?

Global analysis of oscillation data

Prog. Part. Nucl. Phys. 102 (2018) 48 + OSCILLATION UPDATE 2019 in collaboration with E. Lisi, A. Marrone and A. Palazzo

Oscillation datasets

K. Abe *et al.* [Super-Kamiokande Collaboration], Phys. Rev. D 94 (2016) no.5, 052010
B. Aharmim *et al.* [SNO Collaboration], Phys. Rev. C 88 (2013) 025501
B. T. Cleveland, *et al.*, Astrophys. J. 496 (1998) 505
J. N. Abdurashitov *et al.* [SAGE Collaboration], Phys. Rev. C 80 (2009)
F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Phys. Lett. B 685 (2010) 47
M. Agostini *et al.* [BOREXINO Collaboration], Nature 562 (2018) no.7728, 505

Oscillation datasets

A. Gando et al. [KamLAND Collaboration], Phys. Rev. D83 (2011) 052002

Solar and KamLAND

Comparison between Solar and KamLAND

Long standing weak tension in terms of δm^2

Oscillation datasets

Long baseline accelerator experiments

Comparison of constraints for $(\theta_{23}, \Delta m^2)$

Slight preference for non maximal θ_{23} . Good agreement!

Long baseline accelerator experiments

Comparison of constraints for $\boldsymbol{\delta}$

Small tension in terms of δ . Preference for normal ordering

Oscillation datasets

Combined they are sensitive to all parameters

LBL Acc + Solar + KamLAND

Oscillation datasets

We then strongly constrain θ_{13} with:

Daya Bay collaboration, D. Adey *et al.*, arXiv:1809.02261 RENO collaboration, G. Bak et al., arXiv:1806.00248 A. Cabrera Serra, Talk given at the CERN EP colloquium, CERN, Switzerland, September 20, 2016.

Analysis results: covariance (θ_{23} , θ_{13})

Analysis results: covariance (θ₂₃,θ₁₃)

Analysis results: covariance (θ₂₃,θ₁₃)

Analysis results: covariance (θ_{13} , δ)

 1σ SBL reactor constraint

 θ_{13} -constraint increases precision on δ

Analysis results: covariance (θ_{13} , δ)

Francesco Capozzi - Max Planck Institute For Physics

Analysis results: covariance (θ_{23} , Δm^2)

Δm^2 more compatible in NO

Analysis results: covariance (θ_{23} , Δm^2)

Francesco Capozzi - Max Planck Institute For Physics

Oscillation datasets

We finally add the rich phenomenology of atmospheric neutrinos

K. Abe *et al.*, [Super-Kamiokande Collaboration] Phys. Rev. D97 (2018) 072001 M. G. Aartsen et al. [IceCube Collaboration], Phys. Rev. Lett. 120 (2018) no.7, 071801

Oscillation datasets

We finally add the rich phenomenology of atmospheric neutrinos

M. G. Aartsen et al. [IceCube Collaboration], Phys. Rev. Lett. 120 (2018) no.7, 071801 Francesco Capozzi - Max Planck Institute For Physics

42

PROGRESS

Super-K constraints

Mass ordering sensitivity depends on distinguishing v_e from \overline{v}_e

Separation is performed on a statistical basis in Super-K

Super-K constraints

Mass ordering sensitivity depends on distinguishing v_e from \overline{v}_e

Preference for normal ordering (~ 2σ) and second octant (~ 1σ)

Current and future level precision creates unprecedented challenges:

Current and future level precision creates unprecedented challenges:

- analysis details are becoming too complicated for external pheno groups (systematics, A.I. tools, ...)

Current and future level precision creates unprecedented challenges:

- analysis details are becoming too complicated for external pheno groups (systematics, A.I. tools, ...)

- common ingredients must be treated in the context of a global analysis (models for cross sections, fluxes, ...)

Current and future level precision creates unprecedented challenges:

- analysis details are becoming too complicated for external pheno groups (systematics, A.I. tools, ...)

- common ingredients must be treated in the context of a global analysis (models for cross sections, fluxes, ...)

Global analyses will require joint experimental effort

Non-oscillation data

Phys. Rev. D 95 (2017) no.9, 096014) in collaboration with E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo

Non oscillation data

Cosmology, β and $0\nu\beta\beta$ decays can probe:

$$\Sigma = m_1 + m_2 + m_3$$

$$m_{\beta\beta} = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$$

$$m_{\beta}^{2} = \sum_{i=1}^{3} |U_{ei}|^{2} m_{i}^{2}$$

Non oscillation data

Here we focus on Σ and $m_{\beta\beta}$

Only oscillation constraints, with $\Delta \chi^2(IO) = \chi^2 \cdot \chi^2_{min}(IO)$

 $\Sigma(NO) > 0.06 \text{ eV}$ and $\Sigma(IO) > 0.1 \text{ eV}$

We convert the constraint on $T_{0\nu\beta\beta}$ from KamLAND-ZEN to $m_{\beta\beta}$

$T_{0\nu\beta\beta}^{-1} = G \left| M^2 \right| m_{\beta\beta}^2$

$0\nu\beta\beta$ constraints on $m_{\beta\beta}$

We convert the constraint on $T_{0\nu\beta\beta}$ from KamLAND-ZEN to $m_{\beta\beta}$

Francesco Capozzi - Max Planck Institute For Physics

$0\nu\beta\beta$ constraints on $m_{\beta\beta}$

We convert the constraint on $T_{0\nu\beta\beta}$ from KamLAND-ZEN to $m_{\beta\beta}$

Francesco Capozzi - Max Planck Institute For Physics

Oscillation + 0\nu\beta\beta constraints, with $\Delta\chi^2(IO) = \chi^2 \cdot \chi^2_{min}(IO)$

The matter power spectrum represents the degree of clustering as a function of scales

Francesco Capozzi - Max Planck Institute For Physics

Neutrino masses (Σ) affect the matter power spectrum at small scales

Francesco Capozzi - Max Planck Institute For Physics

We take the constraint from different cosmological observations

Francesco Capozzi - Max Planck Institute For Physics

We take the constraint from different cosmological observations

Oscillation + 0\nu\beta\beta + cosmology (conservative) constraints $\Delta\chi^2(IO) = \chi^2 \cdot \chi^2_{min}(IO)$

Francesco Capozzi - Max Planck Institute For Physics

Oscillation + 0\nu\beta\beta + cosmology (aggressive) constraints $\Delta\chi^2(IO) = \chi^2 \cdot \chi^2_{min}(IO)$

Francesco Capozzi - Max Planck Institute For Physics

Oscillation + 0\nu\beta\beta + cosmology (aggressive) constraints $\Delta\chi^2(IO) = \chi^2 \cdot \chi^2_{min}(NO)$

 $\Delta \chi^2$ (IO - NO) = 11.7 > 10.2 from oscillations

Conclusions

- Good agreement between different experiments
- We have entered the **precision era** for oscillation parameters

Hint for CP violation (~2σ) and for normal ordering (~3σ)

• Small hint in favour of the second octant of θ_{23}

Non oscillation data corroborates preference for normal ordering

• Global fit new challenges: required joint experimental (+ external) efforts

