ICARE: INTERFACE AND COMMUNICATION FOR Addicts of the Rapid follow-up in Multi-messenger Era

David Corre

Laboratoire Accélérateur Linéaire, Orsay, France

Collaborators: B. Gendre (UWA), S. Antier (APC), N. Leroy (LAL), P. Lognone (LAL), G. Marchal-Duval (LAL), C. Lachaud (APC), M. Coughlin (Caltech), M. Blazek (HETH), E. Bertin (IAP), D. Turpin (NAOC), B. Chabert (UWA)

TS2020

David Corre

26/09/2019

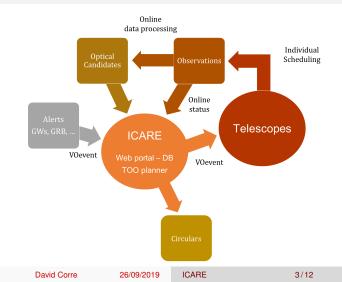
ICARE

MOTIVATIONS

MOTIVATIONS

- Development started <1 year ago for GRANDMA collaboration.</p>
- Network of independent telescopes, not necessarily familiar to the transient science.

REQUIREMENTS


- Automatic reception of MM alerts (GW, GRB, Neutrinos).
- Coordinating observations by distant and independent telescopes spread all over the world.
- Common communication protocol (IVOA based).
- Central database + web interface for real-time monitoring.
- Homogeneous photometry within a network of independent telescopes.

TS2020	David Corre	26/09/2019	ICARE	2/12
--------	-------------	------------	-------	------

Alert reception Database + web interface + Owncloud Communication with telescopes Common detection pipeline

INFRASTRUCTURE OVERVIEW

TS2020

Alert reception Database + web interface + Owncloud Communication with telescopes Common detection pipeline

ALERT RECEPTION

- Python script in charge of listening the various channels (LVC, Swift, Fermi,...)
- Communication protocol : VOEvent
- Specific information are extracted from the VOEvent and store in the database (Sky localisation, distance of the event, SNR, etc)

Infrastructure overview Example of a GW Follow-up Alert reception Database + web interface + Owncloud Communication with telescopes Common detection pipeline

DATABASE + WEB INTERFACE + OWNCLOUD

DATABASE (LAL)

- MySQL / Apache.
- Store information regarding events, observations plans and reports, photometry, GCN circulars.

WEB INTERFACE (LAL)

- HTML5 / PHP7 / javascript / customised CSS / Python 3 scripts.
- Real time monitoring of the follow-up.

OWNCLOUD (LAL)

- client synchronisation between telescopes and LAL servers.
- Store obs. plans and candidates sub-images

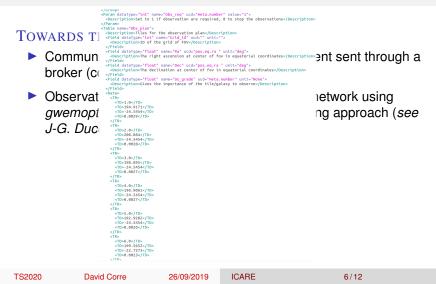
TS2020

David Corre

Multi-messenger Alerts

Alert reception Database + web interface + Owncloud Communication with telescopes Common detection pipeline

COMMUNICATION WITH TELESCOPES


TOWARDS TELESCOPES

- Communication protocol : standardised VOEvent sent through a broker (comet)
- Observation plans are coordinated within the network using gwemopt¹ using either a tiling or galaxy targeting approach (see J-G. Ducoin's talk)

¹https://github.com/mcoughlin/gwemopt

Alert reception Database + web interface + Owncloud Communication with telescopes

COMMUNICATION WITH TELESCOPES

Alert reception Database + web interface + Owncloud Communication with telescopes Common detection pipeline

COMMUNICATION WITH TELESCOPES

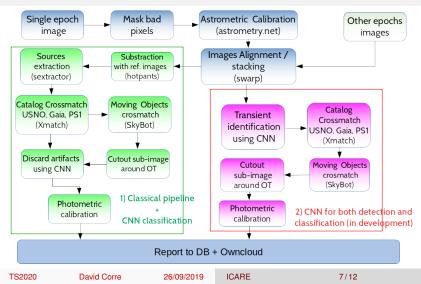
TOWARDS TELESCOPES

- Communication protocol : standardised VOEvent sent through a broker (comet)
- Observation plans are coordinated within the network using gwemopt¹ using either a tiling or galaxy targeting approach (see J-G. Ducoin's talk)

FROM TELESCOPES

- Communication protocol : HTTP POST method + Owncloud
- Reporting:
 - Real-time observation status
 - Optical counterpart candidates photometry + sub-images

¹https://github.com/mcoughlin/gwemopt


Alert reception Database + web interface + Owncloud Communication with telescopes Common detection pipeline

COMMON DETECTION PIPELINE (IN DEVELOPMENT)

- Developed in Python 3
- Detection pipeline run on telescope side to avoid data transfer and the lack of server with huge storage capacity. Configuration adapted to each telescope.
- For the machine learning development, access to GPU server at the IN2P3 Centre de Calcul at Lyon.

Alert reception Database + web interface + Owncloud Communication with telescopes Common detection pipeline

COMMON DETECTION PIPELINE (IN DEVELOPMENT)

Observation plan Optical counterpart candidates Automatic generation of GCN circulars System of shift

grandma-fa-interface.lal.in2p3.fr/Searching_OTs.php?event_tvt

GW FOLLOW-UP: OBSERVATION PLAN

- MOC visualisation of the GW 90 % credible region using Aladin.
- Display each tile sent to the telescopes.
- Status of the observations (time, airmass, lim. mag, ...)
- Localise optical candidates, even found by other teams.

	🗸 Initial sky scar	nning 🔍 🗸 OT follo
Load tiles for:	All telescopes	
Display skymap for:	Revision 4	
Display galaxies	Display OTs	
		алаат.

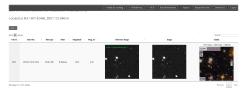
Observation plan Optical counterpart candidates Automatic generation of GCN circulars System of shift

GW FOLLOW-UP: OBSERVATION PLAN

- MOC visualisation of the GW 90 % credible region using Aladin.
- Display each tile sent to the telescopes.
- Status of the observations (time, airmass, lim. mag, ...)
- Localise optical candidates, even found by other teams.

Observation plan Optical counterpart candidates Automatic generation of GCN circulars System of shift

GW FOLLOW-UP: OBSERVATION PLAN


- MOC visualisation of the GW 90 % credible region using Aladin.
- Display each tile sent to the telescopes.
- Status of the observations (time, airmass, lim. mag, ...)
- Localise optical candidates, even found by other teams.

Observation plan Optical counterpart candidates Automatic generation of GCN circulars System of shift

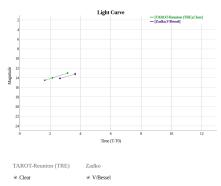
GW FOLLOW-UP: OPTICAL COUNTERPART CANDIDATES

- Can be reported both automatically and manually.
- Internal rating.
- Visual inspection of sub-images with respect to catalogs (PS1, Gaia).
- Multi-wavelength light curve to help for characterisation.
- Observability in the next 24h for all network observatories.
- Send observation request to a specific telescope (VOEvent).

TS2020

David Corre

26/09/2019


ICARE

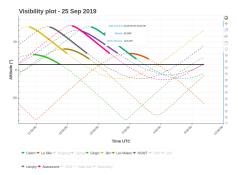
9/12

Observation plan Optical counterpart candidates Automatic generation of GCN circulars System of shift

GW FOLLOW-UP: OPTICAL COUNTERPART CANDIDATES

- Can be reported both automatically and manually.
- Internal rating.
- Visual inspection of sub-images with respect to catalogs (PS1, Gaia).
- Multi-wavelength light curve to help for characterisation.
- Observability in the next 24h for all network observatories.
- Send observation request to a specific telescope (VOEvent).

TS2020


David Corre

26/09/2019

Observation plan Optical counterpart candidates Automatic generation of GCN circulars System of shift

GW FOLLOW-UP: OPTICAL COUNTERPART CANDIDATES

- Can be reported both automatically and manually.
- Internal rating.
- Visual inspection of sub-images with respect to catalogs (PS1, Gaia).
- Multi-wavelength light curve to help for characterisation.
- Observability in the next 24h for all network observatories.
- Send observation request to a specific telescope (VOEvent).

TS2020

David Corre

26/09/2019

ICARE

9/12

Observation plan Optical counterpart candidates Automatic generation of GCN circulars System of shift

GW FOLLOW-UP: GCN CIRCULAR GENERATION

- Automatic GCN circular generation summarising the follow-up campaign.
- Automatic GCN circular generation for candidate follow-up. (in dev.)
- Send directly from the web portal to https: //gcn.gsfc.nasa.gov/

Send GCN circular summarising GRANDMA follow-up campaign Please read carrefully and correct the circular if necessary before sending the circular! TAROT-Reunion (TRE) LIGO/Virgo S198728g : TAROT-Reunion (TRE)/GRANDMA observation report. D. Corre (LAL), S. Beradze (Iliauni), M. Coughlin (Caltech), M Vardosanidze (Iliauni), X. Zhang (THU), M. Boer (Artemis), N. Christensen (Artemis), L. Eymar (Artemis), A. Klotz (IRAP), K. Noysena (Artemis, IRAP), S. Antier (APC), S. Basa (LAM), D. Coward (OzGrav-UWA), J.G. Ducoin (LAL), B. Gendre (OzGrav-UWA), P. Hello (LAL), C Lachaud (APC), N. Leroy (LAL), D. Turpin (NAOC) Report on behalf of the TAROT network and GRANDMA collaborations. We performed tiled observations of LIGO/Virgo S190728g event with the TAROT-Reunion (TRE) telescope operating in the visible located at Les Makes astronomical observatory. The observation started on 07/20/19 20:45:51 UTC which corresponds approximately to 841 minutes after the ON trigger time

Infrastructure overview Example of a GW Follow-up Optical counterpart candidates Automatic generation of GCN circulars

GW FOLLOW-UP: GCN CIRCULAR GENERATION

- Automatic GCN circular generation summarising the follow-up campaign.
- Automatic GCN circular generation for candidate follow-up. (in dev.)
- Send directly from the web portal to https: //gcn.gsfc.nasa.gov/

	v Initial s	sky scanning	× 01	follow-up	GCN	Stop all observation	- Jamp
LI60/Virgo S190728q	: TAROT-Reunion	(TRE)/GRA	NDMA ob	servation	report.		
							^
We performed the fo	llowing tiled ob	servations	1				
TStart TEnd							
[UTC] [UTC							
1							
2019-07-28 2019	-07-29 313.954	1 12.273	1 1	2.5			
20:45:51 01:0		1	1.1				
2019-07-28 2019	-07-29 310.909	4.891	i.	4.9			
21:04:24 15:5		i.	i.	i i			
2019-07-28 2019	-07-30 321.429	16.364	i.	4.4			
21:17:34 17:0	7:57	1	1	1.1			
2019-07-28 2019	-07-29 315	4.891	1	4.9			
21:49:30 08:2	9:13	1	1	1.1			
2019-07-28 2019	-07-28 317.143	16.364	1 2	2.8			
22:21:35 22:2	8:89	1	1	1.1			
2019-07-28 2019	-07-28 318.139	12.273	1 1	0.4			
22:33:49 22:4	0:17	1	1	1.1			
2019-07-28 2019	-07-29 314.483	8.182	1 2	6.7			
23:05:38 00:5	4:33	1	1	1.1			
+			+	+			
TStart and TEnd refers respectively to the time of the first and last							
exposure for a give	n tile. Observat	ions are n	ot nece	ssarily c	ontinuous		
in this interval.							

The Probability refers to the 2D spatial

probability of the GW skymap enclosed in a given tile. Each tile is 4.2x4.2 degrees. These observations cover about 86% of the cumulative probability of the skymap

The typical limiting magnitude is 17.0 for a 60.0 s exposure

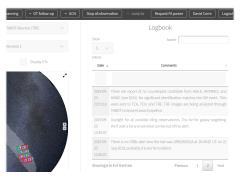
Observation plan Optical counterpart candidates Automatic generation of GCN circulars System of shift

GW FOLLOW-UP: SHIFT SYSTEM

- ICARE includes a shift system.
- Special actions only feasible by the shifter on duty.
- Logbook to communicate between shifters.

Observation plan Optical counterpart candidates Automatic generation of GCN circulars System of shift

GW FOLLOW-UP: SHIFT SYSTEM


- ICARE includes a shift system.
- Special actions only feasible by the shifter on duty.
- Logbook to communicate between shifters.

entries			
Name	Start date (UTC)	End date (UTC)	
Christina Thone	2019-09-25 10:00:00	2019-09-25 16:00:00	
Kanthanakom Noysena	2019-09-25 16:00:00	2019-09-25 22:00:00	
Damien Turpin	2019-09-25 22:00:00	2019-09-26 04:00:00	
Patrice Helio	2019-09-26 04:00:00	2019-09-26 10:00:00	
Christina Thone	2019-09-26 10:00:00	2019-09-26 16:00:00	
Kanthanakom Noysena	2019-09-26 16:00:00	2019-09-26 22:00:00	
Damien Turpin	2019-09-26 22:00:00	2019-09-27 04:00:00	
Patrice Helio	2019-09-27 04:00:00	2019-09-27 10:00:00	
Christina Thone	2019-09-27 10:00:00	2019-09-27 16:00:00	
Kanthanakom Noysena	2019-09-27 16:00:00	2019-09-27 22:00:00	

Observation plan Optical counterpart candidates Automatic generation of GCN circulars System of shift

GW FOLLOW-UP: SHIFT SYSTEM

- ICARE includes a shift system.
- Special actions only feasible by the shifter on duty.
- Logbook to communicate between shifters.

Observation plan Optical counterpart candidates Automatic generation of GCN circulars System of shift

SUMMARY

- ICARE infrastructure allows to:
 - automatise MM follow-up from alert reception to the sending of coordinated observation plans to a network of independent telescopes, and report of observations.
 - Web portal to monitor in real-time the network follow-up.
 - Centralise information in a common database.
 - Homogenise the photometry with a common detection pipeline.
- ► In operation for GRANDMA -> continuous active development.
- ► End to end infrastructure -> attractive for new telescopes.
- Adaptable to any network of telescopes. (Alert reception, obs. plan production and delivery are also used for SVOM).

Observation plan Optical counterpart candidates Automatic generation of GCN circulars System of shift

SUMMARY

All the codes will be open source and available soon at: https://gitlab.in2p3.fr/icare/icare

TS2020

David Corre

26/09/2019

ICARE

12/12