

LSST in a few figures

Optical telescope 8.4 m diameter (f/1.23)

Wide-field camera: 3.5°, 3.2 Gpixels

6 wide-band filters U g r i Z y

Galaxies: r_{lim}=27.5 after 10 year coadd.

• Final catalogue: 10¹⁰ galaxies, 10¹⁰ stars

- Final database 15 PetaBytes
- Weak lensing up to z ~ 3
- 2,500,000 SNIa up to z ~ 1
- BAO: 3.10⁹ galaxies up to z ~ 3
- Transients with alerts (2.10⁶/night)
- See LSST science-book in http://www.lsst.org

http://www.lsst.org/

Summary of High Level Science Requirements

Survey Property	Performance		
Main Survey Area / duration	18000 sq. deg. / 10 years		
Total visits per sky patch	825 (1 visit per ~3-4 nights)		
Filter set	6 filters (ugrizy) from 320-1050nm		
Single visit	2 x (15 second exposures + 1s shutter + 2s readout)		
Single Visit Limiting Magnitude (AB 5σ)	u = 23.9; g = 25.0; r = 24.7; l = 24.0; z = 23.3; y = 22.1		
10 year coadd. Limiting Magnitude	u = 26.1; g = 27.4; r = 27.5; I = 26.8; z = 26.1; y = 24.9		
Photometric calibration	< 5mmag repeatability & colors, <10mmag absolute		
Median delivered image quality	~ 0.7 arcsec. FWHM		
Transient processing latency	60 sec after last visit exposure		
Data release	Full reprocessing of survey data annually		

The Science Enabled by LSST (see science book: arXiv:0912.0201)

- Time domain science
 - Nova, supernova, GRBs, GW
 - Source characterization
 - Gravitational microlensing
 - Interstellar scintillation
- Finding moving sources
 - Asteroids and comets
 - Proper motions of stars
- Mapping the Milky Way
 - Tidal streams
 - Galactic structure
- Dark energy and dark matter
 - Gravitational lensing
 - Supernovae studies
 - Large scale structures (incl. BAO)
 - Slight distortion in shape
 - -> Trace the nature of dark energy

LSST Observing Cadence(*)

- 2x15s exposures^(*) (to 25 mag) per visit to a given field (9.6 deg²)
 - -> cosmic ray rejection
- Visit the field again same night
 - -> asteroid identification
- Number of visits/night: 900 (1 or 2 passbands)
- main survey (85%) fields:
 visited every ~3 days (random colorband) and every ~15 days in r band
- Deep-Drilling (5%, 5 fields):
 1 hour/night. 50 consecutive 15s exposures x 4 filters
- Galactic plane / North Ecliptic / South pole /Mini-surveys: under discussion

.75.001.251.501.752.002.252.502.753.003.253.503.754.004.254.50 Median Inter-Night Gap (days)

Figure 6.3: Histograms of median r-band intra- (left) and inter- (right) night visit gaps for several OpSim runs.

Transient science with LSST

LSST alerts -> broker -> trigger follow-up for specific events

- Microlensing (with caustic crossing) -> Dark matter / planets [hours]
- SNs -> **Cosmology [days]**
- Asteroids -> **Save the Earth!** [minutes-days]

- ...

Search for optical counterparts AND trigger follow-up [minutes-hours]

- GW -> Hubble constant (with spectro-z) [minutes]
- GRB afterglows
- Neutrino sources
- High Energy cosmic ray sources

« Offline » science [minutes AND years]

Search for signals through the broker files

- Retroactive targetted search for GW in the interferometer records
 - -> Potential factor 2 for GW searches
 - -> Also GRB afterglows?
- Microlensing [months-years]
- Interstellar scintillation: search for turbulent molecular (hidden) gas in the MW [minutes]
- SN echoes... Varying large structures [years]

LSST alerts...

Detection of transients announced within 60s. Expect ~ 2 million per night

Transients detected (+ or -5σ) and reported in 60s in difference images =(current - coadded template), called DIASources

- **Broker**: Filter a stream of ~ 2 million DIAsources/night: Variable stars, SNe, asteroids, and « everything else »
 - → Julien Peloton talk
 - -> Robust filtering *(remove false detections)*

Given a stream of ~ 10,000 DIASources every ~ 40s (per 10 deg² field)

- Asteroids will dominate on the Ecliptic, become insignificant >30° from it.
- Variable stars (~ 1 % of all stars) will dominate in the Galactic plane, always significant (~ 400/field @ Galactic pole)
- Quasars will contribute up to 500/field (but likely several times lower)
- **SNe** will contribute up to about **100/field** with only **10 new**

Discovery rate of new transients will drop fast (factor of ~ 100 after 2 years) new DIASources will become dominated by cataclysmic variable stars and quasars

Scenario for a GW search in LSST

Assume GW detected within a 20 deg² box

- -> covered by 3 LSST fields
- -> IF (night) THEN ...

data taken and processed in < 4minutes

Broker: Remove already cataloged variable objects: periodic, SNs, asteroids...

- -> expect only ~ 3x10 brand new transients @ 5σ (SNs):
 - -> Targeting galaxies not necessary
 - -> Follow-up these 30.
- Remember: LSST will only detect the counterpart and NOT monitor it

Detection of γ-ray burst afterglows

Microlensing expectations

O(10⁸ stars) monitored

- with ∆m < 5mmag
- Towards Milky-Way
- Towards LMC/SMC
- On average every 4th night during 10 years
- Search for BHs (Tristan Blaineau Thesis)
- Search for planets (floating or not)
- Study Milky-Way structure (mass distributions and kinematics)

Table 8.4: Nearby Microlens Event Rates

	Past	Present	LSST	
	per decade	per decade	per decade	per decade
Lens type	$per deg^2$	$per deg^2$	$per deg^2$	over 150 deg^2
M dwarfs	2.2	46	920	1.4×10^{5}
L dwarfs	0.051	1.1	22	3200
T dwarfs	0.36	7.6	150	2.3×10^{4}
WDs	0.4	8.6	170	2.6×10^{4}
NSs	0.3	6.1	122	1.8×10^4
BHs	0.018	0.38	7.7	1200

Follow-up after the broker

Function of the broker: trigger observations with other instruments

- LSST is not sufficient for the vast majority of transient science
- Need for
 - spectroscopy (SN science...) -> 10m class telescopes
 - More photometry focused on specific candidates :

GW counterparts, microlensing, scintillation, special variability

- -> 1-4m class telescopes, networks of small telescope, spatial telescopes (Spitzer, Swift, WFIRST, Euclid)
 - To add colours, polarisation...
 - To finely sample the light-curves (search for planets)
- More astrometry for Earth-killer asteroids (orbitology...)

Microlensing: light-curve seen from space differs from light-curve seen from Earth (parallax)

Precursor: The OGLE Early Warning System

- ~ 300 million stars monitored + emerging objects
- DIA photometric pipeline
- Masking previously detected variable objects
- After 4 successive detections (object magnified or emerging object)
 - -> flag
 - -> Visual selection
 - -> Provide finding charts, light-curves, photometric data, instantaneous microlensing parameters
- -> 1800 events/season

Example: microlensing alert file

OGLE-2019-BLG-1450

Field BLG662.07 Star No 27491 RA (J2000.0) 17:27:49.88 Dec (J2000.0) -31:03:07.0 Remarks

 T_{max} 2458765.323 ± 1.146 (2019-10-08.82 UT)

 $\begin{array}{lll} tau & 24.018 \pm 0.926 \\ u_{min} & 0.000 \pm 0.261 \\ A_{max} & 21581.2 \pm - \\ D_{mag} & 10.835 \pm 0.000 \\ f_{bl} & 1.000 \pm 0.000 \\ I_{bl} & 17.474 \pm 0.001 \\ I_{0} & 17.474 \pm 0.001 \end{array}$

Last Epoch in data: 2458741.60997 (2019-09-15.11 UT)

Click here to download gzipped tar file containing full data set for this event (including map.dat: O-IV VI map (CMD) or I-band map of the finding chart field).

Go to main EWS page where info on other events can be found.

Finding chart (available also in <u>FITS format</u> (without cross) and <u>Postscript</u>).
 The image size is 2' x 2', North is up and East is to the left.
 If V-band database is available also the CMD of the finding chart field is displayed.

<<< Previous

• Event light curve (available also in Postscript format)

• Photometry data file containing 5 columns: Hel JD, I magnitude, magnitude error, seeing estimation (in pixels - 0.

The "Threat" from "Earth killers"

The "Threat" from "Earth killers"

Interaction with LSST-transient

- Remember: LSST is NOT an observatory/facility
 - The consortium will not offer open time or ToO
 - Exception: GW only can motivate dedicated pointings
 - ~ half of the sky visited every 3-4 nights (but with different filters)
 - 1000 deg² In the Galactic Center observed only 180 times (confusion limits interest for ad libitum coaddition...) -> only long time-scale μlensing
- But there is some flexibility: cadencing is not (yet) set in stone
 - As long as the uniformity of the main survey is guaranteed over the 10 yrs
 - As long as there is no conflict with the cosmological goals
 - Taking into account the filter changes (6 filters)
- Also think on the commissioning (2021-22) and mini-surveys (1-10% time) ex. mini-survey 1/2 nights movie towards LMC is necessary for scintillation
- The broker will deliver public alerts: but with some restrictions
- Bringing follow-up facilities to LSST is probably a good value...
- Collaborate with a member of LSST to benefit from privileges
- **discuss** with enough anticipation with the TVS science group -> establish contact with the french community already involved in LSST.

Complements

Ref. documents:

- LDM151
- LSE-163_DataProductsDefinitionDocumentDPDD

Search for missing H₂ turbulent galactic gas through scintillation detection (the OSER project)

Light received by telescope varies with

- timescale ~10 min (due to the relative velocity of the gas)
- modulation of a few % (depending on distances / turbulence parameters / source extension)

Illumination pattern from a scintillating star

LSST visits

the total number of visits is 2.45 million, with

- _ 85.1% spent on the Universal proposal (the main deep-wide-fast survey)
- **_** 6.5% on the North Ecliptic proposal
- **1.7%** on the Galactic plane proposal
- **2.2%** on the South Celestial pole proposal
- **4.5% on the Deep Drilling proposal (5 fields)**

Delivery by LSST mini-broker (60s)

- Positions (0.1"), shapes (moments), PSF, fluxes (in the current passband) and (co)variances
- Alert confidence level
- 30x30 pixels patch on difference image and reference image (with mask and variance)
- 6 months of history: variations associated with the object detected in the difference image
 - Variability characteristics (but no astrophysical interpretation)
 - Environment (neighbouring objects, distances...)
 - See details in document LSST/LDM-151

LSST main survey deliverable

« 4D » object mapping (stars, galaxies...) of 18,000 sq. deg. to an uniform depth

- (α, δ) positions on the sky
- Photometric redshifts z
- Time variations -> SN, lensing, AGN...

Other survey modes

~10% of time ~1h/night

Deep fields + fast time

domain + special zones

(ecliptic, galactic plane,

Magellanic clouds)

0.060.120.180.240.300.360.420.480.540.600.660.720.78 Median Intra-Night Gap (hours)