

GW follow-up with IACTs

Halim Ashkar (on behalf of the H.E.S.S. GW team) Transient Sky 2020 – Paris 2019

Science Case: VHE emission in compact binary coalescence

- Neutron star neutron star
- Neutron star black hole
- Black hole black hole ???
- Examples of VHE GRBs:
 - GRB190829A detected by H.E.S.S.
 - GRB 190114C detected by MAGIC
 - GRB180720B detected by H.E.S.S
 - GRB 130427A : Ephoton~ 95 GeV (minutes) 32GeV(hours)
 - GRB 090510: in prompt phase Ephoton~30 GeV
 - GRB 081024B: in prompt phase Ephoton~ 3 GeV

Get information on GRB spectra and remnant structures

But localization regions vary from 10s to 1000s deg²

H.E.S.S. constraints

- Obs windows
- (Sun and moon position)
- Addition: Moonlight obs
 - Phase < 60%
 - Alt < 50°
 - Source separation > 30°
- Visibility of source
- Some parameters:
 - FoV = 1.5° 2.5°
 - Max zenith angle = 60°

2D strategy:

- Compute the total probability inside the FoV
- Choose the pointing with the highest integrated probability for each observation

$$P_{\rm GW}^{\rm FoV} = \int_0^{FoV_{\rm H.E.S.S.}} \rho_i d\rho_i$$

GW170817 90% localization area. Distance = 40 \pm 8 Mpc

0 Mpc < Distance < 100 Mpc

GW170817 90% . localization area. Distance = 40 ± 8 Mpc

20 Mpc < Distance < 60 Mpc

GW170817 90% • localization area. Distance = 40 ± 8 Mpc

32 Mpc< Distance < 48 Mpc

Use distance information: 3D strategies

FoVH.E.S.S. $P_{\rm GW}^{\rm FoV} =$ $\rho_i d\rho_i$

 $P_{\rm GWxGAL}^{\rm FoV} = \int_0^{FoV_{\rm H.E.S.S.}} P_{\rm GWxGAL}^i dP_{\rm GWxGAL}$

- Obs window
- Visibility
- Zenith angle
- H:E.S.S. FoV .

- Correlate the probability map with the galaxies
- Galaxies are taken as the center of pointings (seeds)

31.27° x 20.51°

- Obs window
- Visibility
- Zenith angle
- H:E.S.S.,FoV ·

Correlate the probability map with the galaxies

Obs window

• Zenith angle

• H.E.S.S. FoV

11

• Visibility

 Galaxies are taken as the center of pointings (seeds)

- Correlate the probability
 map with the galaxies
- The pointing with the highest integrated galaxy probability is chosen for the given window

- 31.27° x 20.51°
- Obs window
- Visibility
- Zenith angle
- H:E.S.S.,FoV ·

Example: GW170817

Example: GW170817

Example: GW170817

</Param> rt system oup type="GW SKYMAP" name="bayestar"> <Param name="skymap_fits" dataType="string" value="https://gracedb.ligo.org/api/superevents/ S190701ah/files/bayestar.fits.gz" ucd="meta.ref.url"> <Pescription>Sky Map FITS</Description> </Param> entific aboration </Group> RG <Group type="Classification"> <Param name="BNS" dataType="float" value="0.0" ucd="stat.probability"> <Description>Probability that the source is a binary neutron star merger (both objects lighter than 3 solar masses)</Description> </Param> Fully automatic handling of <Param name="NSBH" dataType="float" value="0.0" ucd="stat.probability"> <Description>Probability that the source is a neutron star-black hole merger (primary heavier than 5 solar masses, secondary lighter than 3 solar masses)</Description> alerts and data acquisition by </Param> nume="BBH" d_taType="float" value="0.934372647001" ucd="stat.probability"> <Param the VoAlerter <Description>Probability that the source is a binary black hole merger (both objects heavier than 5 solar masses)</Description> </Param> <Param name="MassGap" dataType="float" value="0.0" ucd="stat.probability"> <Description>Probability that the source has at least one object between 3 and 5 solar masses Description> </Param> <Param name "Terrestrial" ataType="float" value="0.0656273529992" ucd="stat.probability"> Likely astrophysical? Event identificat <DescriptionsProbability that the source is terrestrial (i.e., a background noise fluctuation or</pre> Yes BBH<50%? a glitch)</Description> -------</Param> Algorithm selection <Description>Source classification: binary neutron star (BNS), neutron star-black hole (NSBH), _ _ _ _ _ _ _ _ _ _ binary black hole (BBH), MassGap, or terrestrial (noise)</Description> Response latency **Observation delay?** </Group> <Group type="Properties"> Prompt! Full schedule <Param name="HasNS" dataType="float" value="0.0" ucd="stat.probability"> Schedulin Is there a visibility window? <Description>Probability that at least one object in the binary has a mass that is less than 3 solar masses</Description> Full schedule: Iterative process </Param> <Param name="HasRemnant" dataType="float" value="0.0" ucd="stat.probability"> Minimum 5% probability Is it visible? <Description>Probability that a nonzero mass was ejected outside the central remnant object Minimum 5% probabilit Description> Total probability requirement fulfilled? 10% BNS&BHNS 50%BBH </Param> Yes

<Description>Qualitative properties of the source, conditioned on the assumption that the signal is an astrophysical compact binary merger</Description>

</Group>

Yes

Observe

No

GW follow-up observations and analysis

Observation Run O2

Halim Ashkar - GW follow-up with IACTs - TS2020 Paris 2019

GWTC-1: O2 catalog

GW170814: BBH

3rd night

- For O2 technical, trial run on BBH: GW170814 (3 days before real NSM trigger!)
- 14 August 2017, seen by aLIGO-L, aLIGO-H and Virgo Credible region sky area (without V1): 1160 deg2 (with V1): 60 deg2

H. Ashkar, F. Schüssler, M. Seglar-Arroy (2019). 12th NTEGRAL conference / 1st AHEAD workshop, *MmSAI*, Arxive 1906.10426, https://arxiv.org/abs/1906.10426

GWTC-1: O2 catalog

GW170817: BNS

H.E.S.S. was the first ground based instrument on target!

- 5.3 hours after merger
- 5 minutes after the update of the GW skymap (LIGO+Virgo reconstruction)
- The first observation covered the afterwards identified position of the NS-NS
- In subsequent nights: monitoring of the EM counterpart

13^h15^m00^s 13^h10^m00^s 13^h05^m00^s Right Ascension (J2000)

EM170817 long-term follow-up →implications on time dependent magnetic field

- The "late-time" follow-up of GW/GRB170817:
 - Radio and x-ray:
 - 10x flux increase in 150 days
 - Efficient electron acceleration synchrotron emission in merger remnants magnetic field
 - Plateau and turnover after 160 days
 - TeV γ rays ??
 - Good condition for γ-ray production via ssc

- Pointed observation covering plateau and fading of non-thermal emission (125 to 270 days)
- 32 hours exposure with CT5
- 54 hours exposure with CT1-5

- Radio & X-rays probe synchrotron emission
 - Provides N_e *U_B
 - Provides lower limit on E_{max,e}
 - Alone cannot disentangle the two components
- γ-rays probe inverse Compton emission
 - Provides $N_e * N_e * U_B (N_e * U_B \sim fixed via ssc)$
- >Radio, X-ray, γ-ray can break ambiguity

2 scenarios: Spherical outflow: ≥ 200 uG Off-axis jet: ≥ 50 uG

Paper in preparation

- Model SSC emission in two scenarios at 110 days after the merger
- Peak of IC component expected in core H.E.S.S. energy range

GW follow-up observations and analysis

Observation Run O3

Halim Ashkar - GW follow-up with IACTs - TS2020 Paris 2019

Follow-up of O3 gravitational wave events

ID	Time (UTC)	Type	90% C.R.	Δ_t	N_p	\mathbf{P}_{GW}	Follow-u	р
S190408	19-04-08 18:18	BH-BH	$387 \ \mathrm{deg}^2$	-	-	-	No	
S190412	19-04-12 $05:31$	BH-BH	$156 \ \mathrm{deg}^2$	\sim 13h	6	66%	No	
S190425	19-04-25 $08:18$	NS-NS	$7461 deg^2$	-	-	-	No	
S190426	19-04-26 $15:22$	NS-NS	$1262 \ \mathrm{deg}^2$	$\sim 6 {\rm h}$	9	4 %	No	
S190503	19-05-03 18:54	BH-BH	$443 \ \mathrm{deg}^2$	-	-	-	No	
S190512	19-05-12 $18:07$	BH-BH	$339 \ \mathrm{deg}^2$	5h30m	9	34%	Yes	
S190513	19-05-13 $20:54$	BH-BH	$691 deg^2$	4h20m	1	9%	No	
S190519	19-05-19 15:36	BH-BH	$967 \ \mathrm{deg}^2$	$> \mathrm{days}$	-	-	No	
S190521	19-05-21 03:03	BH-BH	$1163 \ \mathrm{deg}^2$	$> \mathrm{days}$	-	-	No	
S190521-II	19-05-21 $07:44$	BH-BH	$488 \ \mathrm{deg}^2$	$> \mathrm{days}$	-	-	No	
S190602	19-06-02 18:00	BH-BH	$1172 \ \mathrm{deg}^2$	> days	-	-	No	
S190630	19-06-30 $18:52$	BH-BH	$8493 \ \mathrm{deg}^2$	-	-	-	No	
S190701	19-07-01 $20:33$	BH-BH	$67 \ \mathrm{deg}^2$	6h	3	51%	No	
S190706	19-07-06 $22:26$	BH-BH	$1100 \ \mathrm{deg}^2$	$> \mathrm{days}$	-	-	No	
S190707	19-07-07 09:33	BH-BH	$1375 \ \mathrm{deg^2}$	15h	-	-	No	00N 05007
S190718	19-07-18 $14:35$	Terrestrial	$7246 \ \mathrm{deg}^2$	-	-	-	No	GCN 25237:
S190720	19-07-20 00:09	BH-BH	$1599 \ \mathrm{deg}^2$	> days	-	-	No	https://gcn.gsfc.nasa.
S190727	19-07-27 06:03	BH-BH	$841 \ \mathrm{deg}^2$	> days	-	-	No	gov/gcn3/25237.gcn3
S190728	19-07-28 06:45	MassGap	$104 \ \mathrm{deg}^2$	13h	4	50%	Yes	

Re-observation based on RTA

GW follow-up with CTA

Low-latency gravitational waves follow-up program of CTA

Halim Ashkar - GW follow-up with IACTs - TS2020 Paris 2019

Simulations of VHE counterpart searches in GW follow ups with CTA

Simulation of BNS mergers and GW detection with GWCOSMoS:

Patricelli, B., et al. (2018)

- Merger rate of 830 Gpc-3 yr-1
- Max distance = 500 Mpc
- Localisation using BAYESTAR
- Distance and angle with respect to the line of sight are known from mock catalog of BNS merger

Simulation of VHE emission from sGRBs:

- 0.1-10 GeV luminosity as a function of time derived from typical properties of LAT GRBs (in particular GRB090510)
- Light curve normalized from the correlation found in Nava L., et al. (2014) between Eiso and $L_{LAT}^{t=60S}$ for a sample of 10 LAT GRBs
- During initial phase flux is proportional to t²
- Deceleration phase luminosity decreases as t^{-1.4}
- The spectral shape is considered a simple power-law with photon index-2.1 ($NE \propto E^{-2.1}$) spectrum, extrapolated up to 10 TeV (normalization derived from the integrated luminosity 0.1-10 GeV)

Alert injection & GW follow-up observation

- Scheduling:
- Low-energy coverage (zenith angle optimization)
- Probability coverage maximization
- $TJ = Talert + Tslew + \sum_{1}^{J-1}TJ$

$$\int_{t_0}^{t_0 + T_{obs}} \frac{dF(t)}{dt} dt = F_{5\sigma}^{int}(t_0, t_0 + T_{obs})$$

CTA observation searching for an EM counterpart

Analysis of the CTA scheduled observations (run-by-run)

2

Seglar-Arroyo, M., et al (2019). ICRC2019 (PoS 790), https://arxiv.org/abs/1908.08393

Thank You

The search for Compact Binary Mergers in a nutshell

Burst searches

- Look for excess power time frequency patterns consistent in multiple detectors
- Can search for un-modeled & un-expected sources (ex: SN)

Template searches

- Anticipates GR waveforms (from models) as a and finds the template that fits data best
- Confident detection & parameter estimation
- Probable 3D information

LVC Maps

- Healpix format
- Pixel indices + 4 layers
- 1. Prob: Probability
- If has3D info:
 - 2. Distmu: distance average
 - 3. Distsigma: distance error
 - 4. Distnorm: normalization

Singer, L. P. et al. 2016, *The Astrophysical Journal Letters*, 829L, 15S

