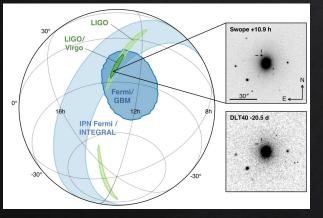


GRANDMA

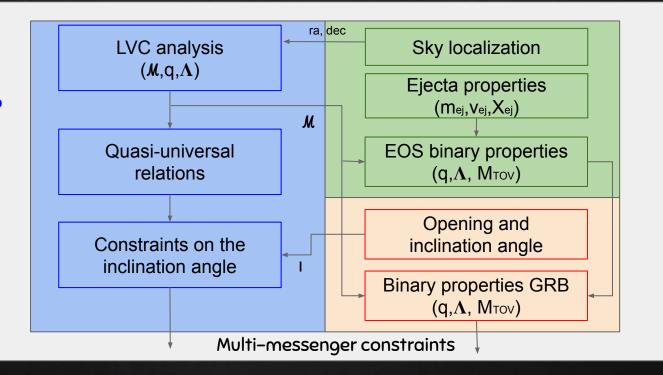
Global Advanced rapid Network Devoted to multimessenger addicts



MULTI-MESSENGER ASTRONOMY

Why was GW170817 so bright and blue early?

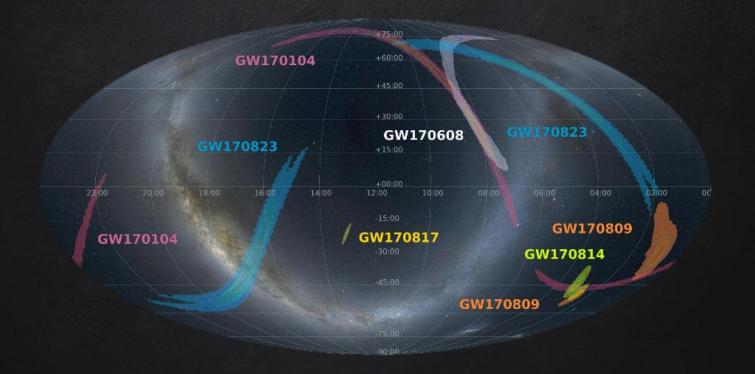
Do all neutron-star mergers generate relativistic ejecta?


How does the emission evolve in the first few hours post merger?

M. W. Coughlin, T. Dietrich, et al. Using kilonovae as standard candles to measure the Hubble Constant, submitted PRL, August 2019, 1908.00889

B. P. Abbott, et al. Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817., 850:L39, December 2017

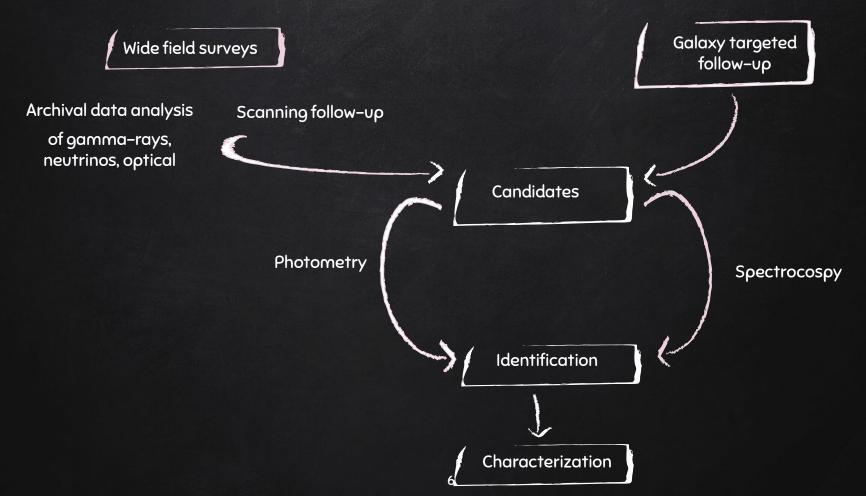
Multi-messenger astronomy A bridge between Physics and Astrophysics


Gravitational wave signal

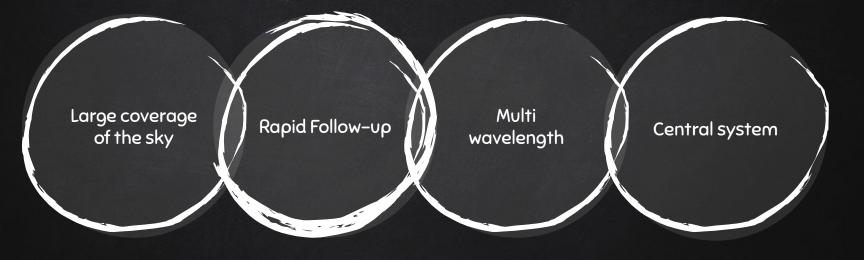
Kilonova

Gamma-ray burst afterglow

LIGO-VIRGO O2 CAMPAIGN



Low latency gravitational wave alerts for multi-messenger astronomy during the second advances LIGO and Virgo observing runs APJ, 2019 - S.Antier and M.Cho for the LVC collaboration


WHERE IS CHARLIE ?

FOLLOW-UP STRATEGY

CONCEPT

Local team

Scientists – Infrastructure

CONNECTING EXISTING FACILITIES THAT ARE NOT SUPPOSED TO BE CONNECTED WITHIN A YEAR

2.

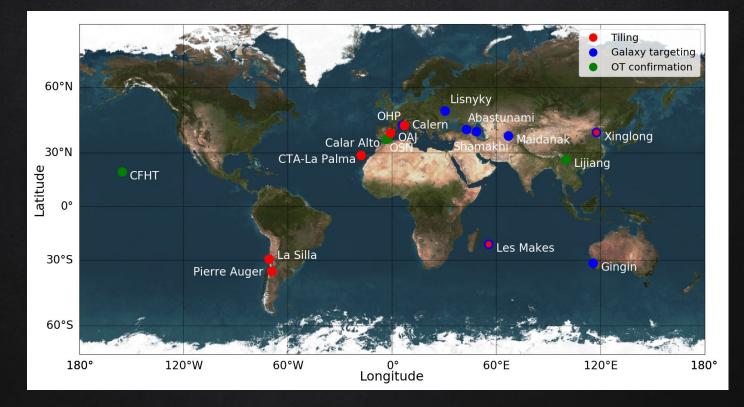
1.

Created in April, 2018 by LAL – Obs Nice

1

More than 65 scientists Pl. S.Antier

 \star


22 institutes / groups CNRS/LAL - APC - IAP - Obs Nice - IRAP - LAM

Present in 11 countries 17 observatories

GRANDMA: Global Rapid Advanced Network Devoted to the Multi-messenger Addicts, Accepted MNRAS, GRANDMA collab. July 2019

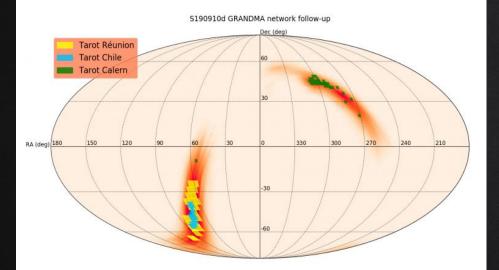
AN EMPIRE WHERE THE SUN NEVER RISES

ToO Proposal 2020A CFHT (PI. Coleiro) – NOEMA (PI. Kann) – TNT/TRT (PI. Noysena)

GRANDMA COLLABORATION

- More than 65 scientists from astronomy and GW fields
- Joining GRANDMA required LOI for science/contribution and shifts

Science management plan


- Core team + observers
- Alphabetic order with 1–2 names in front in major contribution
- Data are not public

Follow-up advocate needs:

- Monitoring the network
- Report OT and observations to GCN

- <u>Development</u> different works packages
- Collaboration
- Data Base
- Detection pipeline
- Alert manager and plan sender
- Network optimization
- Photometric and spectroscopic follow-up
- Infrastructure coordination
- Citizen science
- Review

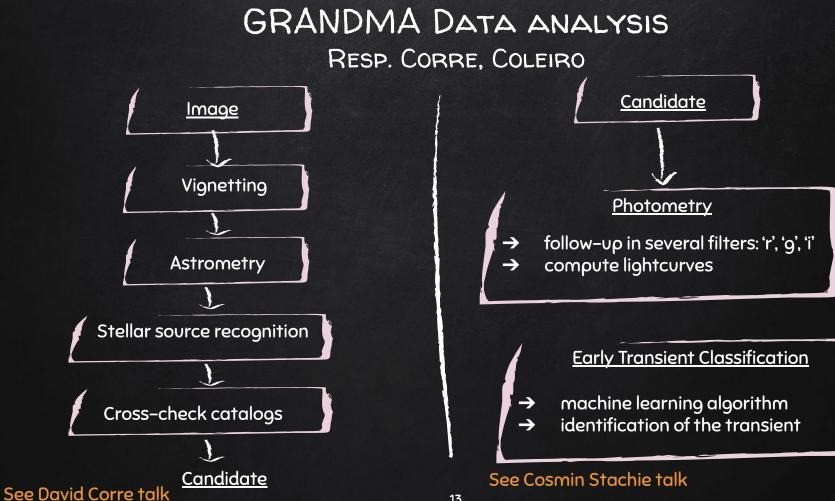
JOINT SCHEDULER RESP. COUGHLIN, LEROY

Spatial coverage

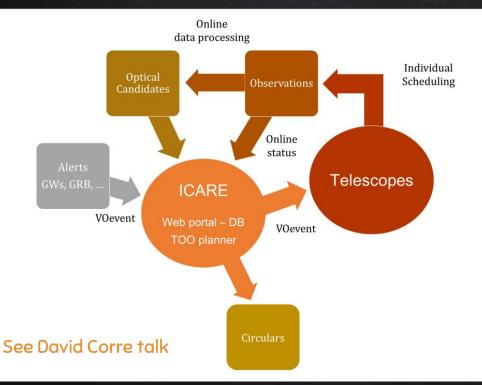
Distribution of the tiles over the network

Temporal resolution X

Best portion of the credible region observed several times with 1h delay minimum


Galaxies specific selection

Compatible with GW distance and with galaxies properties. See Jean-Grégoire Ducoin talk


Designed for each telescope X

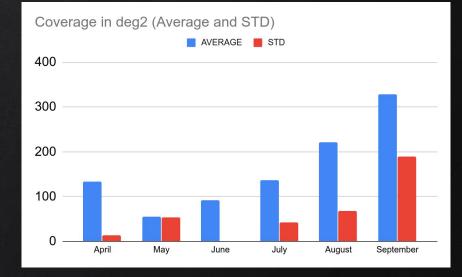
Taking account location of the telescope, maximum tiles, strategy, ...

Optimizing Multi-Telescope Observations of Gravitational-Wave Counterparts, MNRAS, Coughlin, Antier, Corre et al, Sept 2019 12

GRANDMA E-INFRASTRUCTURE: ICARE RESP. GENDRE

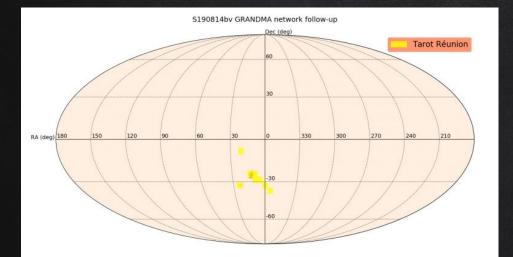
X Communication with telescopes Standardized specific Voevents **Central Manager** Reception of any type of alert and sender Time domain Web portal Monitor of GW/GRB observations and candidates Candidates from online pipelines External candidates Automatic report Central data base

Interface and Communication for Addicts of the Rapid follow-up in multi-messenger Era, In prep, Antier, Corre, Gendre et al



THE O3 CAMPAIGN

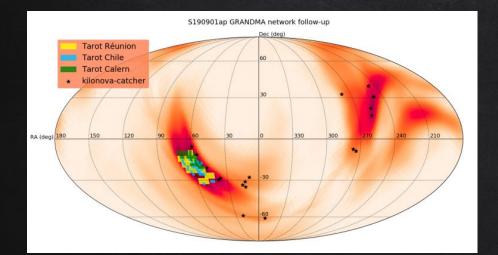
25/31 FOLLOW-UP OF GW ALERTS 3 NS-BH 16 BBH MERGERS


Delay since the GW trigger time (hours)

6 BNS

GW190814bv

16



On Sept 1, 21:10:39 UTC NSBH (99%) LAL Inference Dist Lum. 267 ± 52 Mpc 23 deg2 for the 90% credible reg.

No counterpart found at 19 mag https://gcn.gsfc.nasa.gov/gcn3/25338.gcn3 https://gcn.gsfc.nasa.gov/gcn3/25599.gcn3

GW190901AP

On Sept 1, 23:31:01 UTC BNS (86%) LAL Inference Dist Lum. 241 ± 79 Mpc 14 753 deg2 for the 90% credible reg. TAROT network + kilonova-catcher 24 min after GW TO 9.1% of the LAL Inference coverage 354 deg2 for the GRANDMA network 50h for total observation with multiple revisits

No counterpart found at 18 mag

https://gcn.gsfc.nasa.gov/gcn3/25688.gcn3 https://gcn.gsfc.nasa.gov/gcn3/25666.gcn3

17

Optical Network but not only Gamma-Ray Bursts Searches Resp. Antier

GLAST/GBM, INTEGRAL/SPI-ACS daily data

Offline detection of GBM and SPI-ACS gamma-ray transients with wild binary segmentation

Confirmation of GBM (SPI) triggers

- Estimation of their significance
- independant duration of the GRB
- Search for precursors

New triggers

- Short, Long
- X-ray rich, Hard
- Cross match with catalogs

Detection of gamma-ray transients with wild binary segmentation, submitted MNRAS, Antier, Barynova et al, Sept 2019, https://arxiv.org/abs/1909.10002

GRANDMA CITIZEN SCIENCE: KILONOVA-CATCHER RESP. TURPIN, CAILLEAU

TITLE: GCN CIRCULAR NUMBER: 25688 SUBJECT: LIGO/Virgo S190901ap : No significant candidates found in GRANDMA citizen science observations DATE: 19/09/09 13:53:09 GMT FROM: Jean-Gregoire Ducoin at LAL <ducoin@lal.in2p3.fr>

GLOBAL EFFORT : NO DISCOVERY YET

	GW alert rate	Telescopes involved	Time available	Delay	Nom. sensitivity GW Follow-up	Nom. sensitivity counterpart Follow-up	Spectroscopy	Other-wavel ength
GRANDMA	25	23 in 17 sites	unlimited	~30 min	17 – 21 (c,r)	~23	~ 19 mag	gamma, smm (?)
GROWTH	8	~60 in 19 sites	few hours per alerts	~ hours	20.5 (g, r) ~22 (r, z)	~23	~ 22 mag	gamma radio
MASTER	30	14 in 7 sites	unlimited	~ minutes	~ 19 (c)	~20	no	-
GRAWITA	~8	~10 in 3 sites	few hours per alert Asiago unlimited	~ hours	16 - 22 (r)	~23	~ 22 mag collab. ENGRAVE	radio
GOTO	~5	2 in 2 sites	few hours per alerts	~ dozen of minutes	~20 (I)	~21	-	-
SVOM	11	7 in 3 sites	unlimited	~ hours	16 – 18 (c,r)	~21	~ 19 mag	Future
PS1 – Atlas	~7	2 in 1 site	few hours per alerts	~ hours	~19.5 (o) ~ 21 mag (i)	~22	collab. ENGRAVE	-

- **X** Generic low latency detection pipeline
- Advanced OT characterization and follow-up
- ★ GRB program : follow-up and ICARE support

80% OF GW ALERTS FOLLOWED

KILONOVA-CACTCHER Citizen science program

Multi-wavelength project Including Physicist and astronomers

76% of first NS-BH loca. covered in 1h at 17 mag

UNE SUCCESS STORY

Multimessenger Plateform ICARE

16 min between GW TO and TAROT-TCA for 190915ak GEOGRAPHIC DIVERSITY 23 TELESCOPES IN 17 OBSERVATORIES