GW170817: bilan des observation multi-messagers: qu'avons nous appris?

 $D = 40 \text{ Mpc} (D_{H} = 136 \text{ Mpc}); \quad \theta_{v} = 20 - 25^{\circ} \rightarrow \text{ an EXCEPTIONAL event: GW + GRB + KN + AG }$

Taux attendu pour des événements comme GW/GRB 170817 :

$$\begin{split} \tau_{170817} = \tau_{NSNS} \times f_{GW} \times f_{d} \times f_{a} &= \tau_{NSNS} \times 2.4 \ 10^{-3} \\ \tau_{NSNS} \sim 10/an \ \rightarrow \ \tau_{170817} \sim 1/40 \ ans \ !!! \end{split}$$

 \rightarrow les événements à venir seront plus lointains et/ou plus inclinés

• GRB

Starts 1.7 s after GW signal ; duration: τ =1.5 s

$$\Delta t = t_{jet} + t_{diss} = t_{jet} + R_{diss}/2c\Gamma^2 \sim \tau$$

GRB: photons above 100 keV from 0 – 0.7 s : non thermal spectrum followed by a (possibly) thermal tail Very underluminous: $L_p \sim 10^{47}$ erg/s $E_{\gamma,iso} \sim 4 \times 10^{46}$ erg

 \rightarrow outlier of $\rm E_p - L_{iso}$ correlations

(underluminous) GRB possible 25° off-axis Cannot come from central jet seen off-axis "standard"/new scenario:

 \rightarrow shock breakout at the cocoon boundary

• Afterglow

Radial or/and angular structure ? A priori both can fit the date

But VLBI data indicates the presence of a central decelerating jet

 $\Gamma(\theta_v - \theta_i) \sim 1$ at peak $\rightarrow \Gamma = 2 - 4$

Same spectral regime from radio to X-rays: similar light curves \rightarrow offset X/radio fixes electron spectral index N(E) \propto E^{-p} at p=2.2

• Kilonova

Expanding gas heated by radioactivity of neutron rich nuclei

Red KN: $M_{ej} = 0.05 M_{\odot}$; $v_{ej} = 0.15 c$; $\kappa = 3.65 cm^2/g$ Blue KN: $M_{ej} = 0.023 M_{\odot}$; $v_{ej} = 0.25 c$; $\kappa = 0.5 cm^2/g$

(Metzger, 2017)

(Villar et al, 2017)

What have we learned ?

- A structured ejecta $\dot{e}(\theta)$, $\Gamma(\theta)$ was produced with a successful central jet
- A (weak) GRB can be produced 25° off-axis
- The unusual afterglow results (mostly) from the angular structure of the ejecta (with contributions from more energetic, more on-axis material received later → "angular tomography" of thr ejecta)
- A blue (polar, high v, low κ) + a red (equatorial, lower v, large κ) KN were produced

What we would like to know:

- What level of diversity can we expect from NS+NS mergers? *Intrinsic*:
 - is the jet always successful ?
 - can the merger produce a long-lived (how long?) massive neutron star?

External medium:

- is there a class of fast mergers ? \rightarrow high density external medium (R. Duque's talk)

Viewing angle:

- exploring the angular structure of the ejecta
- How frequent are BH+NS mergers ?
 How similar/different are their prompt/afterglow emissions , their kilonovae ?

 \rightarrow More events !

NS + NS events in O3

S190425z: *D*=156 ± 41 Mpc event ID: G330561 50% area: 2806 deg² 90% area: 10183 deg² 60° 60° 30° 30 0° 21^h 12h -30° -30 -60 170817

Very large error box (Livingstone + Virgo only)

but reasonable coverage by ZTF (40%)

- ~ 70 reported candidates but no KN found
- → not in the searched area or fainter than mag 20.5

Viewing angle-magnitude diagram for a KN at the distance of S190425z:

$m_{\rm r}$ brighter than:	22	21	20	19
%:	100	67	36	0.3

KN 170817: $m_{\rm r} = 17.2$

GRB 170817: a truly exceptional event

Before a full analog of GRB 170817 is found:

- GRB 150101B (z=0.13 ; 520 Mpc): no GW, more distant, more on-axis (13°) delayed afterglow, kilonova
- large optical surveys (LSST) to find (orphan) kilonovae
- improved GW sensitivity and localization capabilities to find weak electromagnetic counterparts (KN, early AG)