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What this presentation is about...

Remove noisy components from injected GW signals (compact binaries)
in real interferometer strain data.
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o Actual gravitational waves (GW) searches for compact binary
coalescence (CBC) signals mainly rely on the gaussian noise
hypothesis. How about dealing with the non gaussian part ?

o Low-latency searches are indispensable as the detection rate is
expected to increase in next generation instruments (electromagnetic
follow-up).

o Model based searches are optimal. However a model is not available
for all GW sources (parameter space is partially covered).

— Deep learning (DL)



Convolutional denoising autoencoders (DAE)

The

novel approach we propose:

Recent applications of DL in GW astronomy involve classifiers —
regression problem (denoising)

Rule of thumb: use recurrent networks (ex: LSTM) for timeseries

and use convolutional networks for images
— use 1D convolutional network to perform on strain data from
GW detectors.

Point estimate is useless — Bayesian framework offers a
probabilistic interpretation.
Uncertainty is the key ingredient to inference/decision making.



Data analysis & sparsity

Usually DAE are bottleneck-shaped so as to enforce a sparse
representation.
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o bottleneck enforces DAE to perform a dimension reduction

o Sparsity is crucial when dealing with noise:
high coeffs dictionnary elements are less prone to noise

fluctuations.



Variational autoencoders (VAE)

Add Bayesian framework on top of it:

e Ideally they are identical.
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And minimize the loss function:

Lggra (. P) = —Eang,aix) log po(x|2) + fDx1(g4(2[X)||po(2))

Decoder Encoder
(reconstruction term) (regularisation term)
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Dataset, training & prediction

Dataset:

o Injections: GW signals with f,, = 30Hz

indiv. masses in [10,30] M, signal-to-noise ratio (SNR) in [5, 20].
o Input: whitened GW signals + real interferometric O1 noise
o Output: whitened GW signals

Training
o 3x100 epochs with three distinct chunks of 1000 injections each.
o Flat signal probability: make method robust to near gaussian noise.
o Prevent overfitting: low learning rate & monitor train/test losses.
o Traing time: ~ 0.5d on AMD Ryzen 7 PRO CPU

Predicting by passing N times the same noisy signal to the VAE then
compute p and o. — Equivalent to predicting distributions



Results - SNR=17
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Results - SNR=10
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You said uncertainties ?

From theory:

Output probability of a VAE is the probability of the data x knowing the
learnt latent representation z

but it leads to the following remarks:

o In the context of denoising: g4(z|x) = qg(Znoisy|Xnoisy)
and subsequently pg(x|z) = pg(X|Znoisy)

o VAE loss function design suggests uncertainty is driven by the
parameter 3: make it trainable ! (ongoing work)

ex: previous example with SNR = 17 has
p(signal € 2oregion) = 50% and p(signal € 3oregion) = 74%
— How to interpret this ?
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Highlights from round table

o Gaussian models for decoder output may not fit well with real
posterior distribution

o Flat probability in training may depopulate some regons of the
parametr space: increase aleatoric uncertainty

o Looking forward to invetigating tensorflow probability
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Conclusions & References

Take away ideas:

o Convolutional layers are successfully applied to regresion problems
involving timeseries.

o VAE elegantly combine deep learning efficiency and the Bayesian
framework.

o Marge for making (3 trainable and see whether it helps in
interpreting.
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Backup slide: LIGO O1 events
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