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What this presentation is about...

Remove noisy components from injected GW signals (compact binaries)
in real interferometer strain data.
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Context

o Actual gravitational waves (GW) searches for compact binary
coalescence (CBC) signals mainly rely on the gaussian noise
hypothesis. How about dealing with the non gaussian part ?

o Low-latency searches are indispensable as the detection rate is
expected to increase in next generation instruments (electromagnetic
follow-up).

o Model based searches are optimal. However a model is not available
for all GW sources (parameter space is partially covered).

→ Deep learning (DL)
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Convolutional denoising autoencoders (DAE)

The novel approach we propose:

o Recent applications of DL in GW astronomy involve classifiers →
regression problem (denoising)

o Rule of thumb: use recurrent networks (ex: LSTM) for timeseries
and use convolutional networks for images
→ use 1D convolutional network to perform on strain data from
GW detectors.

o Point estimate is useless → Bayesian framework offers a
probabilistic interpretation.
Uncertainty is the key ingredient to inference/decision making.
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Data analysis & sparsity

Usually DAE are bottleneck-shaped so as to enforce a sparse
representation.

Credits: quora.com

o bottleneck enforces DAE to perform a dimension reduction

o Sparsity is crucial when dealing with noise:
high coeffs dictionnary elements are less prone to noise
fluctuations.
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Variational autoencoders (VAE)

Add Bayesian framework on top of it:

And minimize the loss function:

Credits: lilianweng.github.io

Decoder
(reconstruction term)

Encoder
(regularisation term)
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Dataset, training & prediction

Dataset:

o Injections: GW signals with flow = 30Hz
indiv. masses in [10, 30]M� signal-to-noise ratio (SNR) in [5, 20].

o Input: whitened GW signals + real interferometric O1 noise

o Output: whitened GW signals

Training

o 3x100 epochs with three distinct chunks of 1000 injections each.

o Flat signal probability: make method robust to near gaussian noise.

o Prevent overfitting: low learning rate & monitor train/test losses.

o Traing time: ∼ 0.5d on AMD Ryzen 7 PRO CPU

Predicting by passing N times the same noisy signal to the VAE then
compute µ and σ. → Equivalent to predicting distributions
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Results - SNR=17

m1 = 21M�,m2 = 15M�
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Results - SNR=10

m1 = 11M�,m2 = 15M�
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You said uncertainties ?

From theory:

Output probability of a VAE is the probability of the data x knowing the
learnt latent representation z

but it leads to the following remarks:

o In the context of denoising: qφ(z|x) = qφ(znoisy|xnoisy)
and subsequently pθ(x|z) = pθ(x|znoisy)

o VAE loss function design suggests uncertainty is driven by the
parameter β: make it trainable ! (ongoing work)

ex: previous example with SNR = 17 has
p(signal ∈ 2σregion) = 50% and p(signal ∈ 3σregion) = 74%
→ How to interpret this ?
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Highlights from round table

o Gaussian models for decoder output may not fit well with real
posterior distribution

o Flat probability in training may depopulate some regons of the
parametr space: increase aleatoric uncertainty

o Looking forward to invetigating tensorflow probability
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Conclusions & References

Take away ideas:

o Convolutional layers are successfully applied to regresion problems
involving timeseries.

o VAE elegantly combine deep learning efficiency and the Bayesian
framework.

o Marge for making β trainable and see whether it helps in
interpreting.

References:
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Backup slide: LIGO O1 events

Optimal signal-to-noise ρ : ρ2 =

∫ ∞

0

(
2|h̃(f )|

√
f√

Sn(f )

)2

d ln(f )

(GW150914: ρ ' 24, GW151226: ρ ' 13, LVT151012: ρ ' 10)
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