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Talk Overview

● Motivation for this work.

● What are conditional variational autoencoders?

● What did we do?

● Where do we go from here?



Motivation

● Existing Bayesian parameter estimation is optimal but very slow

● For transient GW events and multi-messenger astronomy it is crucial that we 
produce data products very quickly. 

LIGO-Virgo Collaboration, ApJ Volume 826, 1, L13, 8 (2016) 

LIGO-Virgo Collaboration, ApJ 848, 2, L12, 59 (2017)
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L. Singer & L. Price, PRD 93, 2, 024013 (2016)



Conditional Variational 
Autoencoders
(it’s not magic, I promise)



First - an autoencoder

source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html

the mysterious “latent” space is jargon for some 
N-dimensional non-physical parameter space in 

which to represent your data
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loss based 
on 

input/output 
similarity



Next - a variational autoencoder

source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html 6



Next - a variational autoencoder

source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html

random draw
can’t produce particular 
numbers on command ?

The loss function incorporates a 
KL-divergence term testing the 

Gaussianity of the total distribution 
in the latent space 
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Then - a conditional variational autoencoder

source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html

Within training, the 
true “label” is passed 

with the data

label label

now you can ask for 
a random “7” or “4”, 

etc…
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Analysis overview

● CVAE trained on whitened binary black hole time series in 
Gaussian noise and the true parameter values 
○ (posteriors are NOT used in training)

● 1 million training data, and 256 test samples.
● Prior ranges (uniform): 

○ m1/m2: 35 - 80 M
○ t0: last 65 - 85 % of time 1s window
○ Distance: 1 Gpc - 3 Gpc
○ Phase: 0 - 2pi

● Tune network.
● We produce posteriors, not point estimates.
● Compare with Bayesian inference (Bilby samplers).



Some of the components of our scheme

The GW data

The GW parameters

The prior

The likelihood

The latent space parameters

The posterior

The recognition function 

The target distribution

Gabbard et al, arXiv:1909.06296 (2019)

we are going to use 3 neural 
networks to model each of 

these 3 functions

we never have to 
evaluate this

we generate lots of these

from this

we want this
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The scheme

Loss function:

● Start of derivation

                           … Here be math dragons … 

● End of derivation



What did we find out?
(it’s fast and accurate)



Posterior comparisons

Red:  Our method
Blue: Bilby Dynesty Sampler



7 parameter case



The speed

Gabbard et al, arXiv:1909.06296 (2019)15



Conclusions The take home message
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Variational Inference - 
Future work

● We’ve shown (and so have other groups) 
[Chua & Valisneri  arXiv:1909.05966 
(2019), Green et al. arXiv:2002.07656 
(2020)] that variational inference is a 
powerful tool.

● Extending this to more realistic cases is the 
next step.

● The ultimate aim is to have this working on 
binary neutron stars which emit 
electromagnetic radiation.

● Our pipeline is called VItamin and is 
available to play with here 

https://github.com/hagabbar/VItamin
17



Summary

● We provided motivation for 
decreasing the latency of 
producing GW posteriors.

● We covered variational 
autoencoders.

● We finished off with variational 
inference for Bayesian 
parameter estimation.

● Paper is on arXiv and currently 
with referees at Nature Physics 
(arXiv:1909.06296)
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Thank you for your attention!


