

Bayesian Parameter Estimation using Conditional Variational Autoencoders for Gravitational Wave Astronomy

Hunter Gabbard, PhD Candidate, University of Glasgow

Bayesian Deep Learning for Cosmology and Gravitational waves, PCCP, APC laboratory, Université de Paris

March 5th, 2020

Talk Overview

- Motivation for this work.
- What are conditional variational autoencoders?
- What did we do?
- Where do we go from here?

Motivation

- Existing Bayesian parameter estimation is optimal but very slow
- For transient GW events and multi-messenger astronomy it is crucial that we produce data products very quickly.

LIGO-Virgo Collaboration, ApJ 848, 2, L12, 59 (2017)

LIGO-Virgo Collaboration, ApJ Volume 826, 1, L13, 8 (2016)

Conditional Variational Autoencoders

(it's not magic, I promise)

First - an autoencoder

source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html

the mysterious "latent" space is jargon for some N-dimensional non-physical parameter space in which to represent your data

Next - a variational autoencoder

source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html

Next - a variational autoencoder

The loss function incorporates a KL-divergence term testing the Gaussianity of the total distribution in the latent space

can't produce particular

numbers on command

source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html

Then - a conditional variational autoencoder

now you can ask for a random "7" or "4", etc...

source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html

Analysis overview

- CVAE trained on whitened binary black hole time series in Gaussian noise and the true parameter values
 - (posteriors are NOT used in training)
- 1 million training data, and 256 test samples.
- Prior ranges (uniform):
 - \circ m₁/m₂: 35 80 M
 - \circ t₀: last 65 85 % of time 1s window
 - Distance: 1 Gpc 3 Gpc
 - Phase: 0 2pi
- Tune network.
- We produce posteriors, not point estimates.
- Compare with Bayesian inference (Bilby samplers).

Some of the components of our scheme

The scheme

Loss function:

• Start of derivation

• End of derivation

$$H \lesssim -\frac{1}{N} \sum_{n=1}^{N} \underbrace{\log r_{\theta_2}(x_n | z_n, y_n)}_{-\mathrm{KL}\left(q_{\phi}(z | x_n, y_n) | r_{\theta_1}(z | y_n)\right)}.$$

What did we find out?

(it's fast and accurate)

Posterior comparisons

Red: Our method Blue: Bilby Dynesty Sampler

7 parameter case

The speed

TABLE I. Durations required to produce samples from each of the different posterior sampling approaches.

sampler	run time (seconds)			ratio	$ au_{ m VItamin}$
	\min	\max	median	1400	$ au_X$
Dynesty ^a	602	1538	774^{b}	2.6	$\times 10^{-6}$
Emcee	2005	11927	4351	4.6	$\times 10^{-7}$
Ptemcee	3354	12771	4982	4.0	$\times 10^{-7}$
Cpnest	1431	5405	2287	8.8	$\times 10^{-7}$
$\mathtt{VItamin}^{\mathrm{c}}$	$2 imes 10^{-3}$				1

- ^a The benchmark samplers all produced $\mathcal{O}(3000 10000)$ samples dependent on the default sampling parameters used.
- ^b The reader may note that benchmark sampler run times are a few orders of magnitude lower than what is typical of a complete BBH analysis ($\mathcal{O}(10^5 10^6)$ seconds). This is primarily due our use of a reduced parameter space, low sampling rate and choice of sampler hyperparameters.
- ^c For the VItamin sampler 3000 samples are produced as representative of a typical posterior. The run time is independent of the signal content in the data and is therefore constant for all test cases.

Conclusions

The take home message

Variational Inference -Future work

- We've shown (and so have other groups) [Chua & Valisneri arXiv:1909.05966 (2019), Green et al. arXiv:2002.07656 (2020)] that variational inference is a powerful tool.
- Extending this to more realistic cases is the next step.
- The ultimate aim is to have this working on binary neutron stars which emit electromagnetic radiation.
- Our pipeline is called VItamin and is available to play with here

https://github.com/hagabbar/Vltamin

Summary

- We provided motivation for decreasing the latency of producing GW posteriors.
- We covered variational autoencoders.
- We finished off with variational inference for Bayesian parameter estimation.
- Paper is on arXiv and currently with referees at Nature Physics (arXiv:1909.06296)

Thank you for your attention!

