Bayesian Active Learning for Probabilistic Galaxy Morphology

Mike Walmsley with Chris Lintott, Lewis Smith, Yarin Gal, et al

University of Oxford

BCNN with Two Twists:

1. Embrace Label Uncertainty

2. Apply Active Learning

Posteriors for Votes

• Our CNN can learn from uncertain labels and make probabilistic predictions p(k|w)

Probabilistic CNN

N volunteers and k responses ≈ N trials and k successes

Volunteers N Responses kTypical vote prob. ρ Galaxy xCNN output $f^w(x)$

Volunteer model: $p(k \mid x, N) = Bin(k \mid \rho, N)$

How likely is each ρ given observed k, N?

Log Likelihood
$$\mathcal{L} = \log[Bin(k|\rho,N)] = k\log(\rho) + (N-k)\log(1-\rho) + C$$

Predict $f^w(x) = \hat{\rho}$ and maximise likelihood of $\hat{\rho}$

Posteriors for Votes

• Our CNN can learn from uncertain labels and make probabilistic predictions p(k|w)

For details on BCNN, see Y. Gal (2016)

Posteriors for Votes

• Our CNN can learn from uncertain labels and make probabilistic predictions p(k|w)

Marginalising over weights
 (BCNN) lets us predict votes over
 all CNN we might have trained

$$p(k|D) = \int p(v|w) p(w|D)dw$$

For details on BCNN, see Y. Gal (2016)

Posteriors for Votes

Marginalising over weights
 (BCNN) lets us predict votes over
 all CNN we might have trained

$$p(k|D) = \int p(v|w) p(w|D)dw$$

 BCNN posteriors are much better calibrated

Result: Morphology catalog with trustworthy uncertainties

Uncertainty Matters – Predicting Expert Opinion

Crowdsourced

Sanchez+18 CNN

Walmsley+19 BCNN

Overconfident Classifier

Calibrated Regressor

BCNN with Two Twists:

1. Embrace Label Uncertainty

2. Apply Active Learning

Principles for Choosing Data

Mutual Information
$$I[X,Y] = H[p(X)] - E_{p(Y)}H[P(X|Y)]$$

Information Gain
$$U(x) = H[p(\theta|D)] - E_{p(y|x,D)}H[p(\theta|D,x,y)]$$

Principles for Choosing Data

Information Gain
$$U(x) = H[p(\theta|D)] - E_{p(y|x,D)}H[p(\theta|D,x,y)]$$

$$= I[\theta,y\mid D,x]$$
....rearrange by symmetry of I...
$$= I[y,\theta\mid D,x]$$

$$= H[p(y|x,D)] - E_{p(\theta\mid D)}H[p(y|x,\theta)]$$

Mutual Information

Pick galaxies where the models confidently disagree.

$$I = -\int H[p(k|\theta)] \ p(\theta|D) \ d\theta + H\left[\int p(k|\theta) \ p(\theta|D) \ d\theta\right]$$

Each model is confident...

...but they give different answers

Only possible because we:

- Think about labels probabilistically, $p(k|\theta)$
- Approximate training many models with BCNN, $p(\theta|D)$

Weights
$$\theta$$

$$H = -\sum_{i}^{N} p(k=i) \log p(k=i)$$

Active Learning Results

Selected Galaxies for "Smooth?"

High mutual information

Low mutual informationMike Walmsley et al | BDL in Cosmology and GW 2019

Selected Galaxies for "Smooth?"

High mutual information

Selected Galaxies for "Bar?"

High mutual information

Low mutual information Mike Walmsley et al | BDL in Cosmology and GW 2019

Selected Galaxies for "Bar?"

High mutual information

Live on Galaxy Zoo

Model retrains and requests new classifications weekly

New surveys get classified in weeks, not years

Every galaxy seen by at least 3 volunteers

Get started **↓**

Choose 'Enhanced' to see those galaxies we most

Classic

Enhanced

arxiv: 1905.07424

- mike_w_ai
- @chrislintott
- @yaringal lewis.smith@kellogg.ox.ac.uk