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ZOONIVERSE

BCNN with Two Twists:
1. Embrace Label Uncertainty

2. Apply Active Learning
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Posteriors for Votes
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. Volunteers N
Probabilistic CNN Responses k
Typical vote prob. p
Galaxy x
N volunteers and k responses ~ N trials and k successes CNN output f*(x)

Volunteer model: p(k | x, N) = Bin(k | p,N)
How likely is each p given observed k, N?
Log Likelihood £ = log[ Bin(k |p,N) ] = klog(p) + (N —k)log(1 —p) +C

Predict f"(x) = p and maximise likelihood of p

Mike Walmsley et al | BDL in Cosmology and GW 2019
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Posteriors for Votes
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For details on BCNN, see Y. Gal (2016)

Posteriors for Votes
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e Our CNN can learn from uncertain
labels and make probabilistic
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Posteriors for Votes

o Marginalising over weights
(BCNN) lets us predict votes over
all CNN we might have trained

p(k|D) = f p(vlw) p(w|D)dw

« BCNN posteriors are much better
calibrated

Result: Morphology catalog with
trustworthy uncertainties

Galaxies Within Max Error

ZOONIVERSE

For details on BCNN, see Y. Gal (2016)
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Uncertainty Matters — Predicting Expert Opinion

Crowdsourced

Sanchez+18 CNN

Walmsley+19 BCNN

Expert: Nair (2009)

Predicted Total Nair Bars

Overconfident Classifier

Calibrated Regressor
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BCNN with Two Twists:
1. Embrace Label Uncertainty

2. Apply Active Learning
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Principles for Choosing Data
Mutual Information I[X,Y]| = H[p(X)| — E, )H[P(X|Y)]

Information Gain U (x) = H[p(61D)] = E,,(y|x, pyH[P(61D, x, y)]

For details on Mutual Information, see N. Houlsby (2014)
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Principles for Choosing Data

Information Gain  U(x) = H| | — Ep(y|x,D)H[ ]

116,y | D, x]
...rearrange by symmetry of I...

= I|y, 0| D, x]

= H|p(ylx,D)] — E Hp(ylx, 6)]

For details on Mutual Information, see N. Houlsby (2014)
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Mutual Information Mutual Information I
_ Entropy H
Votes k
Weights 6
Training data D

Pick galaxies where the models confidently disagree.

1=~ | HIp(kI0)] p(@1) do + 1 | [ pCkIa) p(0ID) do
T
Each model is confident... T

...but they give different answers

Only possible because we:

N
e Think about labels probabilistically, p(k|6) T zp(k = D) logp(k = D)
i

e Approximate training many models with BCNN, p(6|D)
Mike Walmsley et al | BDL in Cosmology and GW 2019

For details on Mutual Information, see N. Houlsby (2014)



Active Learning Results

Eval RMSE (Smoothed)
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Selected Galaxies for “Smooth?”

High mutual information

Low mutual information



Selected Galaxies for “Smooth?”
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Selected Galaxies for “Bar?”

High mutual information Low mutual information



Selected Galaxies for “Bar?”

Galaxies (Normalised)
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g PROJECTS ABOUT GET INVOLVED TALK

m Galaxy Zoo ©

Live on Galaxy Zoo

Model retrains and requests Get started ¥
new classifications weekly
Choose 'Enhanced' to see those galaxies we most
New surveys get classified in
weeks, not years [ a— ]

Enhanced

Every galaxy seen by at least 3
volunteers
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