Loop-corrected Higgs Masses in the NMSSM¹ with Inverse Seesaw Mechanism

DAO Thi Nhung¹, Margarete Mühlleitner², PHAN Anh Vu^{1,3,4}

¹Institute For Interdisciplinary Research in Science and Education, ICISE, Vietnam ²Institute for Theoretical Physics, Karlsruhe Institute of Technology, Germany ³University of Science, Ho Chi Minh City, Viet Nam ⁴Vietnam National University, Ho Chi Minh City, Viet Nam

5 December 2020

¹Next-to-Minimal Supersymmetric Standard Model

- **2** Higgs sector in supersymmetric theories
- **③** Inverse Seesaw Mechanism
- **4** Calculation of one-loop corrected Higgs masses
- **G** Constraints
- **6** Numerical analysis

- **2** Higgs sector in supersymmetric theories
- **B** Inverse Seesaw Mechanism
- **()** Calculation of one-loop corrected Higgs masses
- **G** Constraints
- **6** Numerical analysis

About dark matter

Observations:

- Dark matter should exist.
- Dark matter cannot be baryonic matter, neutrinos, or anything in the SM^a.

Questions:

• What is dark matter?

 \rightarrow See Trung's seminar.

^a Gelmini, TASI 2014 Lectures, arXiv:1502.01320

About Higgs boson

Observation:

In 2012, a SM-like Higgs boson was discovered with a mass of 125 GeV ^{ab}.

Questions:

2 Why is the mass of Higgs boson so small?

- New Physics should exist and appear at an energy scale $\gg 125$ GeV, e.g. a new particle with mass $m_N \gg 125$ GeV.
- The Higgs' mass would depend on m_N through quantum correction

$$\delta m_h^2 \sim --- \sim m_N^2 \gg (125 \text{ GeV})^2$$

^a ATLAS collaboration (2012), arXiv:1207.7214. ^b CMS collaboration (2012), arXiv:1207.7235.

About neutrinos

Observation:

- In 1998, neutrino oscillation was observed ⇒ neutrinos have masses ^a.
- In 2019, the upper bound for neutrinos' masses was 1.1 eV^b.

$$0 < m_
u < 1.1$$
 eV.

Questions:

- **3** How do neutrinos get their masses?
- **4** Why are neutrinos' masses so small?

^aSuper-Kamiokande Collaboration (1998), arXiv:hep-ex/9807003. ^bKATRIN Collaboration (2019), arXiv:1909.06048. (1)

About dark matter

• What is dark matter? (See Trung's seminar)

About Higgs boson

2 Why is the mass of Higgs boson so small?

\Rightarrow Supersymmetric models.

About neutrinos

- **③** How does neutrinos get its mass?
- **4** Why are neutrinos' masses so small?

\Rightarrow Seesaw mechanism.

2 Higgs sector in supersymmetric theories

3 Inverse Seesaw Mechanism

4 Calculation of one-loop corrected Higgs masses

G Constraints

6 Numerical analysis

Higgs sector in supersymmetric theories

The largest possible symmetry of nature

Supersymmetry = SuperPoincaré × Internal symmetry.^a

^a S.Coleman et al. (1967); R.Haag et al. (1975)

In supersymmetry conserving theories,

mass, charge, etc.

- Each **fermion** has a partnering **boson** with the same quantum numbers, called a superpartner, and vice versa. They are combined in a **superfield**.
- No quadratic quantum correction.

$$\overset{h}{=} - - \underbrace{\begin{pmatrix} & & \\$$

- For convenience, interactions are encoded in the **superpotential** *W*.
- Supersymmetry should be **broken** at electroweak scale.

Higgs sector in supersymmetric theories

Next-to-Minimal Supersymmetric Standard Model (NMSSM)

Contain 2 Higgs double H_u and H_d . A Higgs singlet superfield \hat{S} to solve μ -problem. Scale-independent = Z_3 -symmetry. The superpotential is

$$W_{NMSSM} = \hat{u}^{c} \mathbf{Y}_{u} \hat{u}_{L} \hat{H}_{u}^{0} - \hat{u}^{c} \mathbf{Y}_{u} \hat{d}_{L} \hat{H}_{u}^{+} - \hat{d}^{c} \mathbf{Y}_{d} \hat{u}_{L} \hat{H}_{d}^{-} + \hat{d}^{c} \mathbf{Y}_{d} \hat{d}_{L} \hat{H}_{d}^{0} - \hat{e}^{c} \mathbf{Y}_{e} \hat{\nu}_{L} \hat{H}_{d}^{-} + \hat{e}^{c} \mathbf{Y}_{e} \hat{e}_{L} \hat{H}_{d}^{0} + \lambda \hat{S} (\hat{H}_{u}^{+} \hat{H}_{d}^{-} - \hat{H}_{u}^{0} \hat{H}_{d}^{0}) + \frac{\kappa}{3} \hat{S}^{3}.$$
(2)

Dynamically generate μ through electroweak symmetry breaking (EWSB):

$$\lambda \hat{S}(\hat{H}_{u}^{+}\hat{H}_{d}^{-}-\hat{H}_{u}^{0}\hat{H}_{d}^{0}) \xrightarrow{EWSB} \underbrace{\lambda \frac{\mathsf{v}_{s}e^{i\varphi_{s}}}{\sqrt{2}}}_{\mu} (\hat{H}_{u}^{+}\hat{H}_{d}^{-}-\hat{H}_{u}^{0}\hat{H}_{d}^{0}). \tag{3}$$

Some features of NMSSM:

- Higgs masses can be calculated from other parameters, resulting in 5 neutral Higgs bosons h_i , i = 1, ..., 5 with $m_{h_1} \le ... \le m_{h_5}$, and 2 charged Higgs bosons H^{\pm} .
- There is one SM-like Higgs boson. Its mass is upper-bounded at tree level.

2 Higgs sector in supersymmetric theories

③ Inverse Seesaw Mechanism

() Calculation of one-loop corrected Higgs masses

G Constraints

6 Numerical analysis

Inverse Seesaw Mechanism

Seesaw mechanisms attempt to answer

- **3** How does neutrinos get its mass?
- Why are neutrinos' masses so small?

³electroweak symmetry breaking

Seesaw mechanisms attempt to answer

- **3** How does neutrinos get its mass?
- Why are neutrinos' masses so small?

Neutrinos get its mass from Yukawa interaction \Rightarrow need right-handed neutrinos.

$$\mathcal{L}^{\text{Yukawa}} = -Y^{\nu} \bar{\nu}_{L} \phi \nu_{R} + h.c. \xrightarrow{\text{EWSB}^{3}} \mathcal{L}^{D} = -\underbrace{m_{D} \bar{\nu}_{L} \nu_{R} + h.c.}_{\text{Dirac mass term}}.$$
 (4)

Right-handed neutrinos are neutral \Rightarrow can have Majorana mass terms.

$$\mathcal{L}^{M} = -\frac{m_{M}}{2} (\bar{\nu}_{L} \nu_{L}^{c} + \bar{\nu}_{R} \nu_{R}^{c}) + h.c.$$
(5)

Mass term of neutrinos

$$\mathcal{L}^{\nu \text{ mass}} = \mathcal{L}^{D} + \mathcal{L}^{M} = -\frac{1}{2} \begin{pmatrix} \bar{\nu}_{L} & \bar{\nu}_{R}^{c} \end{pmatrix} \underbrace{\begin{pmatrix} 0 & m_{D} \\ m_{D} & m_{M} \end{pmatrix}}_{\text{Mass matrix}} \begin{pmatrix} \nu_{L}^{c} \\ \nu_{R} \end{pmatrix} + h.c.$$
(6)

³electroweak symmetry breaking

Seesaw mechanism

Diagonalizing the mass matrix gives ⁴

$$m_{\nu \text{ light}} \approx \frac{m_D^2}{m_M} , \quad m_{\nu \text{ heavy}} \approx m_M.$$
 (7)

 m_D comes from electroweak symmetry breaking $\Rightarrow m_D \sim v \sim 100$ GeV. m_M is a free parameter, independent of the rest of SM $\Rightarrow m_M \sim$ scale of New Physics $\sim 10^{14}$ GeV.

$$\implies m_{\nu \text{ light}} \approx \frac{m_D^2}{m_M} \sim 0.1 \text{ eV}$$
(8)

 \Rightarrow Seesaw mechanism can explain why the masses of neutrinos are so small.

But, heavy neutrinos cannot be detected by experiment.

 $^{{}^{4}}A$ "-" sign has been absorbed into the fields.

- Answer: how neutrinos are massive; why their masses are so small.
- Heavy neutrinos are on TeV scale, can be tested by future experiments

Inverse Seesaw mechanism: right-handed neutrino + neutrino singlet X.

⁵I.Gogoladze *et al*, Phys.Lett. B672 (2009) 235-239

- Answer: how neutrinos are massive; why their masses are so small.
- Heavy neutrinos are on TeV scale, can be tested by future experiments

Inverse Seesaw mechanism: right-handed neutrino + neutrino singlet X. **NMSSM with Inverse Seesaw**: Introduce 3 generations of superfields $\hat{\nu}_R^c$ and \hat{X}

Superfields	Z_3 -charge ⁵	Lepton number
$\hat{\nu}_R^c$	ω^2	-1
Ŷ	ω	1

Table 1: Z_3 -charge and lepton number of newly introduced fields with $\omega = e^{2\pi i/3}$

⁵I.Gogoladze *et al*, Phys.Lett. B672 (2009) 235-239

The superpotential is

$$W = W_{NMSSM} + \hat{\nu}_R^c \mathbf{Y}_{\nu} \hat{\nu}_L \hat{H}_u^0 - \hat{\nu}_R^c \mathbf{Y}_{\nu} \hat{\mathbf{e}}_L \hat{H}_u^+ + \hat{S} \hat{X} \boldsymbol{\lambda}_{\mathbf{X}} \hat{X} + \hat{\nu}_R^c \boldsymbol{\mu}_{\mathbf{X}} \hat{X}.$$
(9)

In the basis (ν_L, ν_R^c, X) , the mass matrix is

$$\boldsymbol{M}_{\nu} = \begin{pmatrix} \boldsymbol{0} & \boldsymbol{v}_{u} \boldsymbol{Y}_{\nu} & \boldsymbol{0} \\ \boldsymbol{v}_{u} \boldsymbol{Y}_{\nu}^{T} & \boldsymbol{0} & \boldsymbol{\mu}_{\chi}^{T} \\ \boldsymbol{0} & \boldsymbol{\mu}_{\chi} & \boldsymbol{v}_{s} \boldsymbol{\lambda}_{\chi} \end{pmatrix}$$

 λ_X violates lepton number and μ_X is the only new dimensionful parameter $\Rightarrow \lambda_X$ is suppressed and μ_X can be on TeV scale.

 \Rightarrow can be tested by experiment.

The mass matrix for light neutrinos

Figure 1: Inverse seesaw mechanism in NMSSM

$$\boldsymbol{m}_{\nu} pprox v_{u}^{2} \boldsymbol{v}_{s} \boldsymbol{Y}_{\nu} \mu_{\chi}^{-1} \boldsymbol{\lambda}_{\boldsymbol{\chi}} (\mu_{\chi}^{-1})^{T} \boldsymbol{Y}_{\nu}^{T} \sim 0.1 \text{ eV}.$$

- **2** Higgs sector in supersymmetric theories
- **B** Inverse Seesaw Mechanism

4 Calculation of one-loop corrected Higgs masses

- **6** Constraints
- **6** Numerical analysis

Higgs sector in supersymmetric theories

Figure 2: Neutral Higgs self-energy diagrams contributing to the Higgs masses. These diagrams are ultraviolet (UV) divergent.

Vu (HCMUS, IFIRSE)

Higgs in NMSSM with inverse seesaw

Two methods were used to eliminate UV-divergence.

Dimensional reduction (DRED)

Dimension	$D = 4 - 2\epsilon$	4
Quantity	$p^{\mu}, x^{\mu}, g^{\mu u}$	A^{μ}, γ^{μ}

Renormalization using counterterm formalism:

$$m_0 = m + \delta m$$
 , $\Phi_0 = (1 + \frac{1}{2}\delta Z_{\Phi})\Phi$

The counterterms are determined using a mixture of these condition schemes

- On-shell (OS) scheme: $t_{h_d}, t_{h_u}, t_{h_s}, t_{a_d}, t_{a_s}, M_W^2, M_Z^2, M_{H^{\pm}}^2, v$
- \overline{DR} scheme⁶: tan β , v_s , $|\lambda|$, $|\kappa|$, Re A_{κ} , φ_{λ} , φ_{κ} , φ_u , φ_s

 $^{^6 {\}rm counterterms}$ are proportional to $\Delta = 1/\epsilon - \gamma_{\textit{E}} + \ln 4\pi$

- **2** Higgs sector in supersymmetric theories
- **B** Inverse Seesaw Mechanism
- **()** Calculation of one-loop corrected Higgs masses

G Constraints

6 Numerical analysis

HIGGS DATA

The SM-like Higgs boson mass $m_h = 125 \pm 3$ GeV⁷.

Higgs' decay width and effective coupling in agreement with LEP, Tevatron and LHC data encoded in HiggsBounds- 5^8 and HiggsSignal⁹ within 2σ significance.

⁷Particle Data Group collaboration (2020)

⁸ Bechtle, Dercks, Klingl, Stefaniak, Weiglein, and Wittbrodt (2020), arXiv:2006.06007.

⁹ Bechtle, Heinemeyer, Stal, Stefaniak, Weiglein (2014), arXiv:1305.1933.

LIGHT NEUTRINOS DATA

Cosmological constrain ¹¹

3		
$\sum m_{m}$	< 0.12	eV.
\sum_{i}	< 0.1	••••
i=1		

Deviation	from	unitarity
$\tilde{U}_{PMNS} = ($	$I - \eta$	U_{PMNS}^{12}

$$\begin{split} &\sqrt{2|\pmb{\eta}_{ee}|} < 0.050, \sqrt{2|\pmb{\eta}_{\mu\mu}|} < 0.021, \\ &\sqrt{2|\pmb{\eta}_{\tau\tau}|} < 0.075, \sqrt{2|\pmb{\eta}_{e\mu}|} < 0.026, \\ &\sqrt{2|\pmb{\eta}_{e\tau}|} < 0.052, \sqrt{2|\pmb{\eta}_{\mu\tau}|} < 0.035. \end{split}$$

 ¹⁰NuFIT5.0; Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020), arXiv:2007.14792
 ¹¹Planck Collaboration (2018), arXiv:1807.06209
 ¹²E. Fernandez-Martinez *et al.*, (2016) arXiv:1605.08774; J.Baglio *et al.*, (2017) arXiv:1612.06403

Vu (HCMUS, IFIRSE)

Higgs in NMSSM with inverse seesaw

Veutrino oscillations ¹	.0
Parameter	3σ
$\Delta m_{21}^2 \ \left[10^{-5} \ { m eV}^2 ight]$	$6.82 \rightarrow 8.04$
$\Delta m^2_{31(23)} [10^{-3} \text{ eV}^2]$	$2.435 \rightarrow 2.598$
	(2.581 ightarrow 2.414)
$\sin^2 \theta_{12}$	$0.269 \rightarrow 0.343$
$\sin^2 heta_{23}$ (normal hierarchy)	$0.415 \rightarrow 0.616$
$\sin^2 \theta_{23}$ (inverted hierarchy)	$0.419 \rightarrow 0.617$
$\sin^2 heta_{13}$ (normal hierarchy)	0.02032 ightarrow 0.02410
$\sin^2 heta_{13}$ (inverted hierarchy)	0.02052 ightarrow 0.02428

LEPTON FLAVOUR VIOLATIONS

- Flavour = generation
- Experiment: neutrino oscillation ⇒ Flavour violation in leptonic sector

Table 2: Flavour quantum number of leptons

Constraints

LEPTON FLAVOUR VIOLATIONS

- Flavour = generation
- Experiment: **neutrino oscillation** \Rightarrow Flavour violation in leptonic sector
- Highly suppressed in the SM due to **GIM**¹³ mechanism.
- GIM mechanism: suppression due to the unitarity of mixing matrix.

¹³Glashow-Iliopoulos-Maiani

Constraints

LEPTON FLAVOUR VIOLATIONS

- Flavour = generation
- Experiment: **neutrino oscillation** \Rightarrow Flavour violation in leptonic sector
- Highly suppressed in the SM due to **GIM**¹³ mechanism.
- GIM mechanism: suppression due to the unitarity of mixing matrix. E.g.
 In the SM, the amplitude of this diagram is

$$\mathcal{M} = U_{ie}^* U_{i\mu} \tilde{\mathcal{M}} \left(\frac{m_{\nu_i}^2}{m_W^2}, \ldots \right)$$
$$\approx \underbrace{U_{ie}^* U_{i\mu}}_{= (U^{\dagger} U)_{e\mu} = 0} \tilde{\mathcal{M}}(0, \ldots) + U_{ie}^* U_{i\mu} \underbrace{\frac{m_{\nu_i}^2}{m_W^2}}_{\sim 10^{-24}} \tilde{\mathcal{M}}'(0, \ldots)$$

 \Rightarrow Chance of happening: $BR(\mu \rightarrow e\gamma) \sim 10^{-55}!$

¹³Glashow-Iliopoulos-Maiani

Lepton Flavour violation (LFV)

Observable	Upper limit	
${\it BR}(\mu^- o {\it e}^- \gamma)$	$< 4.2 imes 10^{-13}$	
${\it BR}(au^- o e^- \gamma)$	$< 3.3 imes 10^{-8}$	
${\it BR}(au^- o \mu^- \gamma)$	$<4.4 imes10^{-8}$	
${\it BR}(\mu^- ightarrow e^- e^+ e^-)$	$< 1.0 imes 10^{-12}$	
$BR(au^- ightarrow e^- e^+ e^-)$	$< 2.7 imes 10^{-8}$	
$BR(au^- ightarrow e^- \mu^+ \mu^-)$	$< 2.7 imes 10^{-8}$	
$BR(au^- ightarrow e^+ \mu^- \mu^-)$	$< 1.7 imes 10^{-8}$	
$BR(au^- o \mu^- e^+ e^-)$	$< 1.8 imes 10^{-8}$	
$BR(au^- ightarrow \mu^+ e^- e^+)$	$< 1.5 imes 10^{-8}$	
$BR(au^- o \mu^- \mu^+ \mu^-)$	$<2.1 imes10^{-8}$	

Table 3: Experimental bound for LFV at 90% confident level¹⁴ \Rightarrow LFV can be used to test and constrain models

¹⁴Particle Data Group (2018)

LFV in NMSSM with inverse seesaw

Figure 3: Diagrams involving neutrino sector that contributes to $\mu
ightarrow e \gamma$

- **2** Higgs sector in supersymmetric theories
- **B** Inverse Seesaw Mechanism
- **()** Calculation of one-loop corrected Higgs masses
- **G** Constraints
- **6** Numerical analysis

We implemented new contributions to the public code NMSSMCALC ¹⁵. Input parameters are taken in accordance with experimental data if available or motivated by previous papers ¹⁶.

In this presentation, we probe the free parameters μ_X , λ_X (from inverse seesaw) and A_t (from NMSSM). Other parameters are kept fixed.

- μ_X dictates the masses of heavy neutrinos, $\mu_X \sim m_{\nu \text{ heavy}}$.
- λ_X controls the effect of lepton flavour violation.
- *A_t* is the soft-breaking parameter in the stop sector. It has significant effect on the correction to the Higgs bosons masses.

¹⁵arXiv:1903.11358; Phys. Rev. D 85, 075024; JHEP 1210 (2012) 122;
 Comput.Phys.Commun. 185 (2014) no.12, 3372-3391; Nucl.Phys. B901 (2015) 526-555;
 Comput.Phys.Commun. 108 (1998) 56-74; Comput.Phys.Commun. 238 (2019) 214-231
 ¹⁶arXiv:1903.11358; JHEP 1704 (2017) 038; Nucl.Phys. B618 (2001) 171-204

Figure 4: The dependence of corrected Higgs masses on μ_X (heavy neutrino masses) in percentage of correction. $M_{h_i}^{ISS}$ is the corrected Higgs mass with Inverse seesaw; M_{h_i} is without inverse seesaw. A correction up to 9% can be seen for SM-like Higgs h_2 .

Vu (HCMUS, IFIRSE)

Higgs in NMSSM with inverse seesaw

Parameter scan

Figure 5: Parameter scan using 100,000 points. Only λ_X and μ_X changes. The bounds are taken from Baglio, Weiland (2017), arXiv:1612.06403.

Parameter scan

Figure 6: Parameter scan using 100,000 points. Only λ_X and μ_X changes. The bounds are taken from Baglio, Weiland (2017), arXiv:1612.06403.

Parameter scan

Figure 7: Parameter scan using 50,000 points. λ_X is kept fixed at $3 \cdot 10^{-9}$. Neutrino sector has sizeable effect on the Higgs sector for large μ_X .

- NMSSM was introduced to answer some problems in SM.
- Inverse seesaw mechanism was introduced to generate small mass for neutrino while keeping heavy neutrinos at TeV scale.
- Constraints such as Higgs and neutrino data, lepton flavour violation and oblique parameters were taken into account.
- Phenomenological analysis of inverse seesaw mechanism in NMSSM and its effect on the Higgs masses was analysed.
- Inverse seesaw mechanism has a sizeable contribution to the Higgs masses for large $\mu_X.$

Outlook: Further analysis can be done on the relation between the Higgs sector and neutrino sector. We are finalizing our numerical analysis for publication.

Acknowledgments:

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2017.78.

Thank you for your listening

Back up slides

Symmetries of the Standard Model:

- Poincaré symmetry = Lorentz symmetry × translation symmetry.
- $SU_C(3) \times SU_L(2) \times U_Y(1)$.

How to go beyond the Standard Model? Expand its symmetry. What is the largest possible symmetry group allowed in QFT?

Symmetries of the Standard Model:

- Poincaré symmetry = Lorentz symmetry × translation symmetry.
- $SU_C(3) \times SU_L(2) \times U_Y(1)$.

How to go beyond the Standard Model? Expand its symmetry. What is the largest possible symmetry group allowed in QFT?

The largest possible symmetry of nature

Supersymmetry = SuperPoincaré × Internal symmetry.^a

^a S.Coleman et al. (1967); R.Haag et al. (1975)

 $\begin{aligned} \textbf{SuperPoincaré} &= \underbrace{\text{Lorentz transformation} \times \text{translation}}_{\text{Poincaré symmetry}} \times (\text{fermion} \leftrightarrow \text{boson}). \\ \end{aligned}$ $\begin{aligned} \textbf{Internal symmetry: symmetries not involving spacetime (e.g. SU(5), U_Q(1), \\ SU_C(3) \times SU_L(2) \times U_Y(1), \text{ etc.}). \end{aligned}$

Supersymmetry

In supersymmetry conserving theories,

mass, charge, etc.

• Each **fermion** has a partnering **boson** with the same quantum numbers, called a superpartner, and vice versa. They are combined in a **superfield**.

Superfield		spin 0	spin $1/2$
êL	\Leftrightarrow	е́ _L	eL
lepton superfields		s leptons	leptons

• No quadratic quantum correction.

- For convenience, interactions are encoded in the superpotential W.
- Supersymmetry should be broken at electroweak scale.

Minimal supersymmetric Standard Model (MSSM)

There are many supersymmetric theories.

Minimal supersymmetric Standard Model (MSSM): the most similar to the SM. The number of newly introduced fields is kept minimal.

¹⁷" ^" is the corresponding superfield

There are many supersymmetric theories.

Minimal supersymmetric Standard Model (MSSM): the most similar to the SM. The number of newly introduced fields is kept minimal.

Contains 2 Higgs doublets H_u , H_d . The superpotential for this model is ¹⁷

$$W_{MSSM} = \hat{u}^{c} \mathbf{Y}_{u} \hat{u}_{L} \hat{H}_{u}^{0} - \hat{u}^{c} \mathbf{Y}_{u} \hat{d}_{L} \hat{H}_{u}^{+} - \hat{d}^{c} \mathbf{Y}_{d} \hat{u}_{L} \hat{H}_{d}^{-} + \hat{d}^{c} \mathbf{Y}_{d} \hat{d}_{L} \hat{H}_{d}^{0} - \hat{e}^{c} \mathbf{Y}_{e} \hat{\nu}_{L} \hat{H}_{d}^{-} + \hat{e}^{c} \mathbf{Y}_{e} \hat{e}_{L} \hat{H}_{d}^{0} + \mu (\hat{H}_{u}^{+} \hat{H}_{d}^{-} - \hat{H}_{u}^{0} \hat{H}_{d}^{0}).$$
(11)

Remarks:

• The SM-like Higgs boson mass is upper-bounded at tree-level,

$$m_h^2 \le M_Z^2 \cos^2 2\beta. \tag{12}$$

Fine-tuning μ-problem: μ should be on supersymmetric scale. But Higgs' masses (small) depends on μ (much larger).

¹⁷"^" is the corresponding superfield