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Motivation: Non-Trivial Vacuum
‘Pnew> = ¢ 10)
Spontaneous Broken Symmetry [1]
Non-Perturbative Methods in Field Theory [2]
Haag’s theorem and unitarily inequivalent vacua [2]

A new origin for breaking Lorentz symmetry



Motivation: Mass-Shift

Mass-generating mechanism
Higgs phase transition [3]
Did the particle mass change more than one time?

Can we know about these instances from today
experiments?

How does this type of new physics
manifest in Long-Range Forces?
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Mass-shift: Toy model with Scalar Boson

e Before the transition

1 1
L1 = 50,6(2)0"$(x) — 5mid* ()
o After the transition
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e Time Evolution Generators
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Mass-shift: Toy model with Scalar Boson

e Canonically quantized, we obtain
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Mass-shift: Toy model with Scalar Boson

 Which vacuum is the current physical vacuum?
[0)1 or [0),?

* Little is known about quantum phase transition [3]

* Should vacuum state be the lowest energy state?
(only necessarily true in non-SSB context [4])

Abrupt Mass-shift:
Chronological order: |0), is the physical vacuum.




Mass-shift: Representation of Fields and Vacua

* Field matching

* Bogolyubov transformation
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Mass-shift: Representation of Fields and Vacua

0)1 = H[CO(E)\Oh +ea(k) |1zl )2 + ca(k)|222_z)2 + -],

k

e Containing pairs of zero-momentum particles

* Evolving non-trivially in time governed by ﬁz

* No longer Lorentz-invariant due to time
dependence

* Analog of metric-varying vacuum in expanding
universes [5]



Condensate Density

* The number density

e Contribution of each k-mode to the number
density
k‘2 ((.UQ — w1)2
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* Candidates for new physics of dark matter and
dark energy
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Long-Range Forces

* Consequence of quantum vacuum process [6]

* Sensitive to non-trivial vacuum structures

One-Boson Exchange
Potential (OBEP)

* \Virtual particle exchange
* Coupling constant dependence
* Perturbative effect

Caglrgr}y Vacuum /

fluctuations

Casimir Force

* Vacuum energy shift
 Boundary conditions on fields
 Non-perturbative effect



Long-Range Forces: OBEP

* Feynman Propagator
Ap(z —y) = 1(0[T]o(x)o(y)]|0)1

* Mixture of positive and negative energy states
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* Momentum space Feynman Propagator
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Long-Range Forces: OBEP

e Potential from Feynman amplitude

k. _igr,
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* Using Feynman rule
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* One-Boson Exchange Potential
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Long-Range Forces: OBEP

m?_=0 (Yukawa)
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Long-Range Forces: Casimir Force

Casimir
plates

Vacuum
fluctuations

* Arise from the boundary conditions on the field due to
Interaction
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R. L. Jaffe, Phys. Rev. D 72, 021301(R) (2005)

e Strong coupling limit due to the many-body nature [6,7]



Long-Range Forces: Casimir Force

* Consider the stress-energy tensor T,z of a scalar field

Taﬁ == 5(1[3

B D) ot

* Pressure from the vacuum at the boundary

Prale = L/2) =1(0] | _lim, Tu(e)— _lim Tu(a)| o)

* Exactly the Casimir force from the m, scalar field

m} & 1 1
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* No m,-dependence!



Discussion

OBEP is a dynamical process, thus it depends on the
mass in the Hamiltonian

Difference between OBEP and Casimir Force

Casimir force considered here is only the strong-
coupling leading order [7]

Both should have complicated dependences on my
and m,



Discussion and Future Prospects

Applicability in the Standard Model

— Little is known about Higgs phase transition [3]

Other manifestation of mass-shift

— Vacuum changes while field representation remains (our OBEP is applicable while
the Casimir force will be different)

— Vacuum changes slowly after the mass-shift into |0),
- Strength OBEP varies through time, peaking at the present

Mass-shift in particle mixing [8]
— There is an ambiguity for the vacuum mass in particle oscillating phenomenon
— Possible new physics hidden in the vacuum for neutrino sector

Unitarily inequivalent vacua as a new arena for phenomenological work
in BSM



Thank you!

Reference: Q. Le Thien, D. E. Krause, Mod. Phys. Lett. A 35 (17), 2050139
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