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Matrix	–	or	ABCD	-	method

AS+BG	>	ABG	  
sig	enriched

CS+BG	≈	CBG	  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Background estimation

When there exist two variables x and y for which 
the BG is uncorrelated, i.e. factorizable: 
 

• Apply all cuts except those on x and y on data

• Divide the x-y plane into 4-regions: 

• When there is no signal, we have 


• In the presence of signal, A will be 
contaminated by the signal.  But we can 
estimate the number of BG events in A from

Note: Always beware the signal 
contamination in the control 
regions.  Add it as a systematic.
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CMS tt+jets cross section measurement 
in the muon+jets channel.



Fake rates method
Background estimation
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CR:

SR:

The ratios of objects found by a tight identification over objects found by a loose 
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD BG in a signal region that has leptons with 
tight ID.  Signal contribution comes from real leptons and QCD contribution comes 
from fake leptons (jets faking leptons).  We define a control region with looser lepton ID. 
CR and SR can be decomposed as:



Fake rates method
Background estimation
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CR:

SR:

Get	these	counts	
from	data

The ratios of objects found by a tight identification over objects found by a loose 
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD BG in a signal region that has leptons with 
tight ID.  Signal contribution comes from real leptons and QCD contribution comes 
from fake leptons (jets faking leptons).  We define a control region with looser lepton ID. 
CR and SR can be decomposed as:



Find	the	ID	efficiency,	using	e.g.	tag	
and	probe	method.

Find	this	efficiency,	i.e.	the	fake	rate	
using	e.g.	a	QCD	control	sample	(e.g.	low	
MET)

Fake rates method
Background estimation
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Get	these	counts	
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The ratios of objects found by a tight identification over objects found by a loose 
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD BG in a signal region that has leptons with 
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Find	the	ID	efficiency,	using	e.g.	tag	
and	probe	method.

Solve	the	two	
equations	
simultaneously	to	get	
these	numbers.

Find	this	efficiency,	i.e.	the	fake	rate	
using	e.g.	a	QCD	control	sample	(e.g.	low	
MET)

Fake rates method
Background estimation
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The ratios of objects found by a tight identification over objects found by a loose 
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD BG in a signal region that has leptons with 
tight ID.  Signal contribution comes from real leptons and QCD contribution comes 
from fake leptons (jets faking leptons).  We define a control region with looser lepton ID. 
CR and SR can be decomposed as:



Find	the	ID	efficiency,	using	e.g.	tag	
and	probe	method.

Get	these	counts	
from	data

Solve	the	two	
equations	
simultaneously	to	get	
these	numbers.

Find	this	efficiency,	i.e.	the	fake	rate	
using	e.g.	a	QCD	control	sample	(e.g.	low	
MET)

Finally	obtain	the	number	of	BG	events	from

Fake rates method
Background estimation

8

CR:

SR:

The ratios of objects found by a tight identification over objects found by a loose 
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD BG in a signal region that has leptons with 
tight ID.  Signal contribution comes from real leptons and QCD contribution comes 
from fake leptons (jets faking leptons).  We define a control region with looser lepton ID. 
CR and SR can be decomposed as:
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• Tag and probe (TP) is a data-driven method used for measuring particle efficiencies. 
It is used for obtaining trigger, reconstruction, identification efficiencies.  Mainly used 
for leptons.


• For TP, we need a mass resonance decaying to the object whose efficiency we want 
to measure (e.g. J/psi, upsilon, Z)


• We select two objects, a tag object and a probe object.

• Tag object : Tight selection/ID criteria- we assume this is a real object.

• Probe object: Very loose selection/ID criteria.


• We compute the diobject invariant mass of the tag object + probe object.

• If the invariant mass is close to the resonance mass value, we assume that the 

probe object was a real object.  Otherwise it should be a fake object. 

• We take the real leptons inside the resonance mass window and apply on them the 

criteria of the selection, whose efficiency we want to measure

• Selection efficiency is computed as

Tag-and probe method
Background estimation



Validating the estimates
Background	esZmaZon

BG estimation methods must always be validated with closure tests or independent 
validation regions, or alternative methods.

Closure tests : Validate the internal consistency of the method, e.g. validate the method 
using purely MC events.

Validation regions : Validate the method in independent dedicated regions.  These can 
have a composition similar to the signal regions but be dominated by BG.  Estimate 
should be equal to data.

Alternative methods : Estimate the BG with multiple methods and compare the results.
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Estimating 
Z(vv)+jets in 
3 different 
ways from 
CMS SUSY 
razor.

Signal-like 
validation 

region from 
CMS SUSY 

razor.



Lecture 3:  
Systematic uncertainties,  
results, interpretation

A few highlights from LHC 
searches

11



(6)	SystemaZc	uncertainZes
12



• Statistical uncertainties are the result of stochastic fluctuations arising from the 
fact that a measurement is based on a finite set of observations. 


• Repeated measurements of the same phenomenon will therefore result in a set 
of observations that will differ.  Statistical uncertainty is a measure of the range 
of this variation.


• Systematıc uncertainties or “systematics” arise from uncertainties associated with 
the nature of the experiment, assumptions made by the experimenter, or the 
theoretical model used to make inferences based on the observed data. 


• They cause a shift in the mean of a measurement from the true value due to 
effects from the experimental setup / theoretical calculations.  They are 
different from statistical uncertainties.


• They can effect either the normalization or the shape of a given distribution.


Effects of both uncertainties on the measured quantity is included in an 
experimental result.

Statistical vs. systematic
Systematic uncertainties
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• Experimental uncertainties (coming from the accelerator/detector setup) on:

• Luminosity measurements

• Trigger efficiency measurements

• Jet energy scale, jet energy resolution measurements

• Lepton, photon, b-jet, W-jet, top-jet, etc. efficiency measurements

• Uncertainties derived in background estimations, e.g. from closure tests, 

validation regions or comparison of alternative estimation methods

• …


• Theoretical uncertainties (due to insufficient accuracy of calculations) on:

• Cross section and branching ratio calculations

• Parton distribution functions

• Initial state / final state radiation, renormalization / factorization scale effects

• …

Types of systematics
Systematic uncertainties

When using MC in an analysis, systematics must be applied on the MC events to 
reflect the uncertainties in the predictions.
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Types of systematics
Systematic uncertainties

Example set of systematic uncertainties and their effects on expected signal yields 
and predicted background yields from a CMS SUSY analysis.
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(8)	Results	and	(9)	InterpretaZon	
(including	staZsZcal	model	(7))
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An experimental result is the empirical outcome of the experiment, the 
measurement of some physical quantity, such as:

• Event counts <— mainly in new physics search analyses.

• Masses

• Cross sections/branching ratios

• Signal strengths

• Couplings

• Kinematic shapes, peaks, edges, endpoints  

(usually to derive masses or mass differences)

• Decay widths

• Charge asymmetry

• Spin correlations

• etc.

What do we measure?
Experimental results
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Event counts
Experimental results
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The results of the SUSY razor search 
consist of event counts in 2-dimensional 
bins of razor variables MR and R2. 

• Observed data counts

• Estimated yields from 4 different 

backgrounds.

• Systematic uncertainties on the 

estimated BG yields (gray shaded band).


In a search analysis, we compare observed 
data and estimated BG yields to see if 
there is agreement or discrepancy.  

We quantify this with a statistical analysis.


It is customary to show expected / MC 
distributions from a few signal points, but 
these are not a part of the results.



Mass
Experimental results
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Higgs	
mass

W 
mass

Top	  
mass



Higgs mass measurements
Experimental results
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Cross section measurements
Experimental results

For a signal process, the number of expected signal events is given by

where εsignal is the product of all branching ratios, geometrical and kinematical 
acceptance, efficiencies for trigger, object reconstruction and identification. 

The cross section can be obtained by reverting the equation:

Cross sections for SM processes are continuously being refined at the LHC.
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SM cross section measurements
Experimental results
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Higgs cross section measurements
Experimental results
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Differential ttbar cross section measurement 
Experimental results
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Signal strength
Experimental results
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Signal strength in a search region: μ = 0: no signal

μ = 1: signal consistent with  
          the SM

μ > 1: signal different from  
          the SM —> BSM

Higgs cross sections Higgs branching ratios



Signal strength - let’s get fancier
Experimental results
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Fitting the signal strength and the Higgs mass 
together to find their common best values.

Comparing production signal strengths for 
different decay channels.

All these help to check the consistency of the discovered Higgs with the SM 
and and see if there are any hints for BSM



Couplings
Experimental results
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v: Vacuum expectation value

Particles	that	interact	
more	with	the	Higgs	field	

are	more	massive.

Couplings of SM particles to the Higgs 
field versus the SM particles’ masses.

A deviation from the SM expectation 
(blue line) would have been a sign of 
new physics.



• Interpretation is the comparison of experimental results with the expectations of a 
given a theoretical model.  


• CAUTION!  Interpretation is NOT the experimental result.

• We use a statistical model and likelihood to interpret the experimental result. 


• The statistical model of an analysis provides the complete mathematical 
description of that analysis. 


• It relates the observed quantities x to the theoretical model’s parameters θi 
through the probability density p(x|θi).  Parameters θi include signal model 
parameters θs  and background model parameters θb.


• The likelihood L(θi) = p(X0|θi) is the probability density p(x|θi) evaluated at the 
observed values X0 of the observables x.


• The likelihood is the starting point of any interpretation. 

• We estimate parameters θ using statistical procedures, and test the validity of the 

model.

• An experimental result can be interpreted with multiple theoretical models.

The idea
Interpretation
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Limits
Interpretation
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Limits: Suppose we are testing a theory with a free parameter θ by an experimental 
analysis.  For example, this parameter could be the mass m of a particle.

Suppose our analysis did not observe a sign of this particle.  Data look consistent 
with the background hypothesis.  What can we say about the theory and m?

We can say up to which value of m our analysis could have observed m, if the theory 
were true.  This is called a limit.  

For a theory with free parameters θi, a limit establishes the boundaries defining the 
range where the experiment can make a statement about the theory.  

Limits are obtained using elaborate statistical methods based on likelihoods.


• Observed limit: Obtained by comparing observed data with  1) signal MC + 
estimated BG   and  2)  with only estimated BG.  


• Checks the consistency of the observation with the signal + BG hypothesis 
and compares it to the BG-only hypothesis.


• Expected limit: Obtained by comparing estimated BG with signal + estimated BG.


• Useful for predicting the analysis sensitivity.



Limits for 1 free parameter
Interpretation
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CMS search for high mass 
dijet resonances.



Limits for 2 free parameters
Interpretation
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Interpreting SUSY razor analysis results in terms of a 
simplified SUSY model, with 2 particles with free 
masses and cross sections.  

Exactly like the 1 free 
parameter case on the 
previous page, but for 2 free 
parameters!



Interpreting with multiple models
Interpretation
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SUSY razor analysis results interpreted for multiple theoretical models:



SUSY mass limits
Interpretation

33

Mass limits on SUSY particles gluinos, squarks in various decay channels to 
neutralinos.  Interpretations were based on several analyses.  

Interpreting the same model with multiple analyses provides complementarity.  



Limits on exotic models
Interpretation
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Limits on long-lived particles
Interpretation
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Now the free parameter is the 
long-lived particle’s proper 
lifetime.  Particle masses are 
fixed.

Different searches exclude 
different lifetimes, providing  
complementary information.



Limits on long-lived particles
Interpretation
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THEORY DIVISION

“Data are coming!  Data are coming!”

37



Actually, it is the other way around…
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Theorists

Experimentalists

What we learn from the absence of discovery and excluding many 
models takes us closer to discovering the true nature of the Universe.



Hands-on exercises 1 and 2:  
Looking into signal and 
background events, plotting 
variable distributions, applying 
simple event selections.
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