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Lecture 1:  
Data, identifying the signal, 
trigger, objects, event selection 
 
…continued.
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Good old invariant mass
Characterizing the signal

A mother particle decaying into I final state particles 
has the invariant mass:

Inv. mass for a mother particle can be reconstructed if the 
4-momenta of all its daughter particles are known.  This 
happens when the decays products are visible.

Inv. mass is used when requiring the particles with a known 
mass (e.g. Zs) in selection, or when looking for new states. 

Higgs 
observed at 
mγγ = 125 GeV.

Inv. mass  
also helps 
new physics 
searches 
indirectly.

mDilepton was 
used above in 
a search for 
SUSY with Z 
+ jets + MET 
to find events 
with Zs.

However no 
excess for  

leptoquarks in 
invariant mass  

distribution.
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W transverse mass
Characterizing the signal

BUT…we do not always have access to full 4-momenta 
of the final state particles. 

For example, in W➝lν decays, invisible neutrinos 
escape the detector.  If there is only one ν in the event, 
we can approximate ν transverse momentum pTν by the 
MET.   We define the transverse mass for W as:

W MT is used extensively in top searches and 
searches for new physics with top-like particles 
as a discriminating variable in the event 
selection (Left: from a ttbar cross section 
measurement in leptons+jets channel).

Used in new physics searches.  
MT distribution for hypothetical 

W’ particles where W’→ev. 

where mT,Wmax gives mW because mT,W < mW.
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The “s”transverse mass
Characterizing the signal

BUT…what if we have more than one invisible particle in the final state?  Take the 
typical case 
 
where ~χs are invisible.  Two invisible particles make up MET.  The stransverse mass 
 
 
 
suggests a way to decompose the MET into these particles.

MT2 is used as a selection variable in SUSY 
searches in ATLAS and CMS

The minimization is over all possible partitions 
of the measured MET.  

However, for massive ~χ, we need the ~χ mass 
for calculating mT2.  It is shown that for different 
input m~χ values, maximum mT2 vs. m~χ curve 
has a kink at the correct m~χ value.
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Razor kinematic variables
Characterizing the signal

Suppose a signal with pair production of heavy particles G, 
each decaying to a massless visible particle χ and a massive 
invisible particle q.

In the G rest frame, the momentum  
of Q is a constant depending on  
heavy particle masses 

Razor variables estimate the momentum of Q in the G rest 
frame using lab frame observables.  
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For a signal with 
heavy G and χ, MR 
distribution peaks at 
mΔ. When there are 
no heavy particles MR 
falls exponentially.

MTR distribution has an endpoint at mΔ.

using longitudional 
lab fr. observables:

using transverse 
 lab fr. observables:



Razor variables
Characterizing the signal

Most kinematic 
discriminators give an 
excesses in the tails 
(e.g. MET), but razor 
variables define a 
“bump”, hence they 
provide very good 
signal-BG 
discrimination. 


For events with >2 
visible objects, we 
partition these objects 
into 2 megajets, then 
compute MR and R2.
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Long-lived particles
Characterizing the signal

Long-lived 
particles
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Long-lived particles
Characterizing the signal

Timing information of the object.

A long-lived BSM particle has bigger 
timing compared to SM particles.

Displacement information of the object from the 
interaction point. 

A long-lived particle can decay far away from 
the interaction point.  
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Lecture 2:  
Selection optimization, 
background estimation
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Event selection and cutflows
Optimizing the selection

• An event selection consists of a sequence of selections, i.e. cuts applied on event 
variables.  Usually multiple event variables are used in an event selection.

• e.g. to find a Z boson, first require 2 electrons or 2 muons, then make sure they 

have opposite electric charge, then calculate their invariant mass and require 
the value to be around the Z mass of 90 GeV, e.g. between 70 and 100 GeV.


• Cutflow: The sequence of cuts leading to a selection (and the number of events 
surviving them, or the selection efficiencies).

• Selection efficiency: Number of events surviving the cuts over number of total 

events.

• Selection region / category: The phase space defined by a sequence of cuts.

• Signal region / category / search region: A selection region where signal can be 

observed with high significance.
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Event selection and cutflows
Optimizing the selection

Example cutflow table from a CMS supersymmetry analysis:
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What is optimization?
Optimizing the selection

• Optimization of a selection involves finding the best selection (best cutflow) out of all 
possibilities which leads to the best sensitivity.


• Sensitivity: The capability of an analysis to observe a given physics process. 
e.g. This analysis is sensitive to supersymmetric particles with mass 3 TeV.


• Sensitivity implies high expected signal significance.


• Significance: A measure of the probability of rejecting the null hypothesis (i.e. 
background).  (Formal definition is more complex, but we won’t go into it here.).


• A commonly used simple approximation:


• But more formal methods are used in real analyses.

• Optimization involves finding the selection that gives the best significance for a 

reasonable amount of data as well as results in the least amount of uncertainties.

• Optimization methods: “by eye”, random grid search, machine-learning-based, etc.
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Hadronic transverse energy: 

How about this one?  Not so obvious… 
The original analysis used HT > 500. 
Maybe we should try several random HT values and 
find the HT that gives the best significance? 
But what if we have many selection variables?

Missing hadronic transverse momentum: 

This one looks easy, doesn’t it?   
Somewhere around 300 GeV?  
The original CMS SUSY analysis used  
HTmiss > 250 GeV 

Rectangular cuts “by eye”
Optimizing the selection
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Rectangular cuts by “Random grid search” 
Optimizing the selection

• Efficient sampling for rectangular cut optimization.

• We would like to find a selection that characterizes the signal final state.

• Most natural way to do this is to use the signal events themselves as candidate cut sets 

(i.e. use values for each cut variable in each signal event as cut candidates).

• Random Grid Search (RGS) tries every cut set, implements the selection, and finds the 

selection that is most optimal (e.g. maximizes significance, etc.). 

• Easily generalized to all types of cuts (interval, box, staircase, etc.)

• Becomes very efficient for optimization over multiple parameters.

Conven&onal	grid	search RGS

signal signal

background background

P. C. Bhat, H. B. Prosper, S. Sekmen, C. Stewart, arXiv:1706.09907 15
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Each colored point corresponds to one 
candidate selection.

Different colors show significance values.  
Red is the best.  

Optimal selections found to be SO3a, SO3b.

Rectangular cuts by “Random grid search” 
Optimizing the selection

2-dimensional cuts optimization using RGS

2-dimensional space of variables.

SO3a and SO3b selections are plotted in 
blue and green lines.

They are shown to effectively separate 
signal and background 

P. C. Bhat, H. B. Prosper, S. Sekmen, C. Stewart, arXiv:1706.09907
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Machine learning methods
Optimizing the selection

Machine learning methods are very useful in getting optimal event selections. 

• Classification methods are used to categorize events into various groups, e.g. 
signal or background. 

• They are also used in classifying objects, by obtaining the best identification 
criteria for objects.  They are used for separating b-jets from light jets, separating 
boosted particles from non-boosted particles, separating long-lived particles from 
promptly decaying particles, etc. 

• Traditional methods like boosted decision trees have been used for years, and 
greatly helped in discoveries like single top quark and the Higgs boson. 

• Nowadays neural networks, even deep neural networks are becoming more 
mainstream, also due to wider availability of GPUs. 

• ML methods are especially useful for cases with small signals buried under large 
backgrounds.  When rectangular cuts do not yield sufficient sensitivity, they are 
applied to extract the utmost sensitivity. 

• They are recently tested for generic searches for anomalies / signals in data. 

Regression methods are also widely used, for robust measurements of quantities 
such as energy, mass, etc. …. BUT this is outside the scope of event selection.



ML: Decision trees
Optimizing the selection

• A decision tree is a binary tree, a sequence of cuts paving the phase-space of the 
input variables.  


• Repeated yes/no decisions on each selection variable is taken for an event until a 
stop criterion is fulfilled.  Each node splits the data according to one attribute.


• For each variable, find the splitting value that gives the best separation.

• Trained with labeled data to maximize the the probability of assigning random events 

correctly as signal or background.

• Similar to rectangular cuts, but 
each selection depends on the 
previous one.  Selection sequence 
effects the result.


• Boosting: Combine information 
from multiple trees.
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ML: Neural networks
Optimizing the selection

• Inspired by the brain – neural networks are composed of “artificial neurons”.

• Approximates and outputs a discriminator which quantifies how signal-like the 

events are. 

The recipe:

• Start from a set of input variables fed 

to the input layer

• For each neuron in the hidden layer, 

compute a weighted sum of the input 
variables.


• Transform the output with an 
activation function


• Repeat the operation for each neuron 
of the next hidden layer


• Output is a weighted sum (average) of 
the previous input layers.

19



ML: Object classification
Optimizing the selection

20

b versus

Electrons

b jets

Boosted tops

ML methods are used for object identification 
and classification.  They provide better 
performance than cut based identification.

Better classified objects allow better signal 
characterization, optimization and 
measurement. 



ML: BDTs in searches
Optimizing the selection

CMS used BDTs to observe and make 
measurements on the single top quark 
production.

Fun fact: Single top observation at Tevatron 
D0 (which used both BDTs and neural 
networks) was a historical analysis marking 
the recognition of these methods in HEP.

ATLAS observed Higgs in the decay channel 
of H —> bb in 2018 thanks to BDTs.

BDTs were trained for different selections 
and their results were combined.
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ML: DNNs in searches
Optimizing the selection

DNN example: CMS analysis measuring Higgs properties in Higgs production in the 
ttH channel, with H —> γγ.  

Higgs production in tHq channel has a similar final state to ttH, and also constitutes 
a background we must get rid of.  Trained 2 DNNs for this purpose

DNN to discriminate ttH + tHq from the 
rest of the backgrounds.

DNN to discriminate ttH from tHq and 
the rest of the backgrounds.
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ML: DNNs in searches
Optimizing the selection

CMS analysis searching for new long-lived particles decaying to jets uses a jet 
classification DNN.  Here is how the architecture looks:

23CMS EXO-19-011, arXiv:1912.12238



Multiple regions
Optimizing the selection

An analysis usually consists of multiple selection regions.  Why?

• SM measurements: Design signal regions for 


• different production/decay channels (e.g. different Higgs production channels)

• to focus on different kinematic properties (e.g. boosted top vs. non-boosted top)


• New physics searches: New physics models have (multiple) free parameters  
—> new particle properties like masses, branching ratios, etc. are variables  
—> design dedicated signal regions to cover different particles and all signatures 
with highest sensitivity. 
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Definition of signal 
regions from a CMS 

SUSY search looking 
for different SUSY 
particles: gluinos, 

squarks, stops, 
sbottoms.

Different multiplicities dedicated to 
different sparticles, or different decay 
model.  Colors show BG composition

Different regions dedicated to 
different SUSY particle masses or 
decay kinematics.




Analysis variables, bins
Optimizing the selection
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Once the signal region selections are done, we must decide which variable(s) we will 
use for testing the signal hypothesis with data.  

Usually, these variables are divided into bins, i.e. discrete intervals.

mT bins in two signal 
regions in a CMS dark 

matter search.

2-dimensional binning in razor variables MR and R2 in 
a CMS SUSY analysis.

The analysis has 8 signal regions defined by jet, b-jet, 
lepton, W and top multiplicities.  

The plot is shown for the boosted top signal region.



(5)	BACKGROUUUNNNNDDSSSS!
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SM processes that 
can constitute 
backgrounds at 
LHC searches.

SM backgrounds measured at LHC
Background	es&ma&on
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We need to estimate the amount (and shape) of the irreducible backgrounds remaining 
in the signal region after signal selections.  

This is a crucial part of analysis.  Numerous methods exist and still being devised.

Use predictions from Monte Carlo simulation:

• Contains all our knowledge on theory and detector.

• We precisely know what physics MC events have.

• Long but persistent way from roughness to precision.

Use data-driven estimation methods:

Common principle: use control regions

• Control region: A selection where background of interest is 

dominant while signal and other backgrounds are negligible.

• Must be disjoint from / not correlated with the signal region.

• Obtain information on BG from the control region and 

extrapolate it to the signal region.

Data and MC can work together:

• Data is used for fine-tuning MC.

• MC shapes of kinematic variables are used in data-driven methods.

28

Generic idea
Background estimation



Using control regions and MC ratios
Background estimation

• Find control regions by reverting some of the signal region selection criteria.

• Find the amount of BG in every bin i in the control region.

• Then multiply this amount with BG expectation ratio between signal rand control 

regions obtained from MC:
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Using control regions and MC ratios
Background estimation
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Signal and control regions in 
the CMS SUSY analysis with 

razor variables.

0 lepton signal region.

Reverted Δφmin QCD 
control region.

Single lepton + b jet 
control region for tt+jets

Single lepton + 0b jet 
control region for W+jets



Replacing particles: Z →νν from Z →l+l- 
Background estimation

Z(➝νν)+jets is an irreducible BG for hadronic searches that use high MET.  However 
there is no straightforward control region where Z(➝νν)+jets is dominant.  

But we can use the Z(➝l+l-)+jets events to estimate the BG contribution from Z( ➝νν)
+jets, sınce Z➝νν and Z➝l+l- events have the same kinematic characteristics.

• Select a l+l- events in a control region with l+l-  invariant mass in the Z mass range 

(we assume this control region is signal-free).

• Count the leptons as MET, i.e.: add lepton momenta to MET and recalculate MET.

• Apply the MET cut and count the observed events.  

• Z(➝νν)+jets can be estimated as:  


• The estimate is corrected by the ratio of Z —> vv / Z —> ll BRs in order to have a 
correct estimate for the yield.

ratio	of	branching	
ratios
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Background estimation
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Estimating Z(➝νν)+jets from Z(➝l+l-)+jets has 
one issue: Number of Z(➝l+l-)+jets events in 
the control region is too low.

Another option is to use γ+jets events since 

• γ+jets and Z+jets kinematics are 

reasonably similar.

• The BR ratio in the estimate formula is 

replaced by Z/γ cross section ratio.

• We also take into technical factors like 

photon purity, etc. 

Single photon control 
region for γ+jets in the 

CMS SUSY analysis 
with razor variables.

Replacing particles: Z →νν from Z →l+l- 



Sideband	method

Used in searches for resonances, where the 
BG has a smooth, well-described shape, and 
the signal peaks over the BG.

• Define a signal region, and find signal-free 

control regions, i.e.  sideband regions 
around the signal region.


• Deduce the shape of the BG from the 
sidebands (polynomial, exponential, etc.?)


• Extrapolate the BG in sidebands to the 
signal region.


• Either count the extrapolated events under 
the signal peak – or -- fit the data 
distribution to BG shape + signal shape 
and extract the parameters of the BG 
function.

Figure	from	P.	Govoni	HCP2011	lectures

Background estimation
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sideband 
region

sideband 
region

signal 
region

sideband 
region



Sideband	method

Used in searches for resonances, where the 
BG has a smooth, well-described shape, and 
the signal peaks over the BG.

• Define a signal region, and find signal-free 

control regions, i.e.  sideband regions 
around the signal region.


• Deduce the shape of the BG from the 
sidebands (polynomial, exponential, etc.?)


• Extrapolate the BG in sidebands to the 
signal region.


• Either count the extrapolated events under 
the signal peak – or -- fit the data 
distribution to BG shape + signal shape 
and extract the parameters of the BG 
function.

Background estimation
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Fit	to	an	analy&cal	func&on

Sometimes the BG is well-described by an analytical function.  If so:

• Find a control region dominated by the BG.

• Find an analytical function that describes the BG well.

• Fit the data to this analytical function in the control region and find the parameters 

of the analytical function.

• Extrapolate the fit to the signal region.

Background estimation
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Matrix	–	or	ABCD	-	method

AS+BG	>	ABG	  
sig	enriched

CS+BG	≈	CBG	  
BG	enriched

DS+BG	≈	DBG	  
BG	enriched

BS+BG	≈	BBG	  
BG	enriched

x

y

y4

y3

y2

y1

x1 x2 x3 x4

control	regions
signal	region

Background estimation

When there exist two variables x and y for which 
the BG is uncorrelated, i.e. factorizable: 
 

• Apply all cuts except those on x and y on data

• Divide the x-y plane into 4-regions: 

• When there is no signal, we have 


• In the presence of signal, A will be 
contaminated by the signal.  But we can 
estimate the number of BG events in A from

Note: Always beware the signal 
contamination in the control 
regions.  Add it as a systematic.
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Matrix	–	or	ABCD	-	method
Background estimation

When there exist two variables x and y for which 
the BG is uncorrelated, i.e. factorizable: 
 

• Apply all cuts except those on x and y on data

• Divide the x-y plane into 4-regions: 

• When there is no signal, we have 


• In the presence of signal, A will be 
contaminated by the signal.  But we can 
estimate the number of BG events in A from

Note: Always beware the signal 
contamination in the control 
regions.  Add it as a systematic.
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CMS tt+jets cross section measurement 
in the muon+jets channel.



Fake rates method
Background estimation

The ratios of objects found by a tight identification over objects found by a loose 
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD in a signal region that has leptons.  Real 
leptons come from the signal and fake leptons come from QCD (jets faking leptons).  
We define two event selections with loose and tight lepton ID criteria, which can be 
decomposed as:
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Get	these	counts	
from	data

Fake rates method
Background estimation

The ratios of objects found by a tight identification over objects found by a loose 
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD in a signal region that has leptons.  Real 
leptons come from the signal and fake leptons come from QCD (jets faking leptons).  
We define two event selections with loose and tight lepton ID criteria, which can be 
decomposed as:
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Find	the	ID	efficiency,	using	e.g.	tag	
and	probe	method.

Get	these	counts	
from	data

Find	this	efficiency,	i.e.	the	fake	rate	
using	e.g.	a	QCD	control	sample	(e.g.	low	
MET)

Fake rates method
Background estimation

The ratios of objects found by a tight identification over objects found by a loose 
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD in a signal region that has leptons.  Real 
leptons come from the signal and fake leptons come from QCD (jets faking leptons).  
We define two event selections with loose and tight lepton ID criteria, which can be 
decomposed as:
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Find	the	ID	efficiency,	using	e.g.	tag	
and	probe	method.

Get	these	counts	
from	data

Solve	the	two	
equations	
simultaneously	to	get	
these	numbers.

Find	this	efficiency,	i.e.	the	fake	rate	
using	e.g.	a	QCD	control	sample	(e.g.	low	
MET)

The ratios of objects found by a tight identification over objects found by a loose 
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD in a signal region that has leptons.  Real 
leptons come from the signal and fake leptons come from QCD (jets faking leptons).  
We define two event selections with loose and tight lepton ID criteria, which can be 
decomposed as:

Fake rates method
Background estimation
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Find	the	ID	efficiency,	using	e.g.	tag	
and	probe	method.

Get	these	counts	
from	data

Solve	the	two	
equations	
simultaneously	to	get	
these	numbers.

Find	this	efficiency,	i.e.	the	fake	rate	
using	e.g.	a	QCD	control	sample	(e.g.	low	
MET)

Finally	obtain	the	number	of	BG	events	from

The ratios of objects found by a tight identification over objects found by a loose 
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD in a signal region that has leptons.  Real 
leptons come from the signal and fake leptons come from QCD (jets faking leptons).  
We define two event selections with loose and tight lepton ID criteria, which can be 
decomposed as:

Fake rates method
Background estimation
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• Tag and probe (TP) is a data-driven method used for measuring particle efficiencies. 
It is used for obtaining trigger, reconstruction, identification efficiencies.  Mainly used 
for leptons.


• For TP, we need a mass resonance decaying to the object whose efficiency we want 
to measure (e.g. J/psi, upsilon, Z)


• We select two objects, a tag object and a probe object.

• Tag object : Tight selection/ID criteria- we assume this is a real object.

• Probe object: Very loose selection/ID criteria.


• We compute the diobject invariant mass of the tag object + probe object.

• If the invariant mass is close to the resonance mass value, we assume that the 

probe object was a real object.  Otherwise it should be a fake object. 

• We take the real leptons inside the resonance mass window and apply on them the 

criteria of the selection, whose efficiency we want to measure

• Selection efficiency is computed as

Tag-and probe method
Background estimation



Validating the estimates
Background	es&ma&on

BG estimation methods must always be validated with closure tests or independent 
validation regions, or alternative methods.

Closure tests : Validate the internal consistency of the method, e.g. validate the method 
using purely MC events.

Validation regions : Validate the method in independent dedicated regions.  These can 
have a composition similar to the signal regions but be dominated by BG.  Estimate 
should be equal to data.

Alternative methods : Estimate the BG with multiple methods and compare the results.

44

Estimating 
Z(vv)+jets in 
3 different 
ways from 
CMS SUSY 
razor.

Signal-like 
validation 

region from 
CMS SUSY 

razor.



Lecture 3:  
Systematic uncertainties,  
results, interpretation

A few highlights from LHC 
searches
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