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Characterizing the signal
Good old invariant mass

A mother particle decaying into | final state particles S M

CMS Preliminary, ¥s = 7 TeV, Lint =211fb"

OSSF

has the invariant mass: I % pata _:
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Inv. mass for a mother particle can be reconstructed if the [
4-momenta of all its daughter particles are known. This 10°F
happens when the decays products are visible.

events / 5 GeV
o

Inv. mass is used when requiring the particles with a known NN
. . . m, (€
mass (e.g. Zs) in selection, or when looking for new states.
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Characterizing the signal
W transverse mass

A
BUT...we do not always have access to full 4-momenta

T T
CLIIS 2012 Preliminary
E— Diboson

Vv
—
S,

o

searches for new physics with top-like particles
*_— as adiscriminating variable in the event
selection (Left: from a ttbar cross section

020 20 60 20 140 San 180 measurement in leptons+jets channel).
M [GeV]

of the final state particles. B iwp [rassornr = Dbosr
For example, in W—lv decays, invisible neutrinos N 12 ‘fﬁ”"“ — Wy
escape the detector. If there is only one vin the event, g 1 — i
we can approximate v transverse momentum p{v by the ¢ 13 -‘I'J"-:ev
. LLI L4 ata
MET. We define the transverse mass for W as: 10° W' ev M=1.3 TeV
10° § —— W' > ev M=2.3 TeV
( », . :
2 2 2 |
mrw = myg+my, +2(prpT — PTPT) . $
(me,my, ~ 0 —) =~ 2p5p%(1 — cos Ap(L, 1)) o]
. 500 1000 1500 2000 2500
where my,ymax gives my, because myy < my,. M, [GeV]
% :IéhlﬁlsllllIIIIIIIIIIIIIIlllllllllllll: —_—
G 35036 pb at N5 = 7 TeV ;35“3 = Used in new physics searches.
2 g00p "1 Ne™S [ single-Top — My distribution for hypothetical
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Characterizing the signal
The “s’transverse mass

BUT...what if we have more than one invisible particle in the final state? Take the

typical case N - PR
PP — 4192 — J1X1J2X2

where ~xs are invisible. Two invisible particles make up MET. The stransverse mass

mra(myg) = o min [ma.x (mT( Pyt ), mr( ]3’7:,3 pT ))] < 'm.g
+pT _]3:‘717_’1288

suggests a way to decompose the MET into these particles.

>105§_"'I"'I".' Iaa'"sl_';'l
The minimization is over all possible partitions S JL - 35 08 e it
4 ~ multije
of the measured MET. S 10°¢ C oD multjet
; X n Signal region B =Z+jéts
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. . . - EE 7 T L + reference poin
for calculating my,. It is shown that for different & ¢ -
' ' — ATLAS
input m._, values, maximum my, VS. m., curve ol
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MT2 is used as a selection variable in SUSY - E
searches in ATLAS and CMS =
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using longitudional Vi
lab fr. observables:

Characterizing the signal
Razor kinematic variables

Suppose a signal with pair production of heavy particles G,
each decaying to a massless visible particle x and a massive
invisible particle q.

In the G rest frame, the momentum . m2, — ..m?( A
of Q is a constant dependingon 1P| = ome 2

heavy particle masses

Razor variables estimate the momentum of Q in the G rest
frame using lab frame observables.

For a signal with

(ﬁgl Ea — ngqu )2 heavy G and X, MR
1 —2\9 5 ~ myp distribution peaks at
(pzt — pz?)? — (F1 — E®) ma. When there are

no heavy particles Mr
falls exponentially.

using transverse R E%niss 1 - .
lab fr. observables: My = > (P(ql"l + pg«?) — §E775”33 . ([)%1 —I—ﬁgg) < MmA
R = 7\-17@/1\1}2 MR distribution has an endpoint at ma.



Most kinematic
discriminators give an
excesses in the tails
(e.g. MET), but razor
variables define a
“bump”, hence they
provide very good
signal-BG
discrimination.

For events with >2
visible objects, we
partition these objects
Into 2 megajets, then
compute Mgr and R=.
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Characterizing the signal
Razor variables
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Characterizing the signal
Long-lived particles

«»=as neutral | displaced B BSM
= Charged HSCP dilepton M lepton
any charge M quark
photon
B anything
disappearing displaced
track | lepton
(l LB RN ENE é
Long-lived .
particles 0
. 0" : . \ .’00
displaced | 7, *“\.\__:‘.,. displaced
dijet s p 2 photon
. o v not pictured:
displaced g displaced out-of-time decays
vertex

conversion



Characterizing the signal
Long-lived particles

137 b (13 TeV)

2104§.|......|...|.|.|...|.§
0 o - CMS ¢  Observation =
o E_ [ ] Cosmic ray muon background ?E
. . . . . ~ - Core and satellite bunch background I
Timing information of the object. > @ 10k B Seam halo muon backgrownd 3
. . . _— GC) - GMSB$§i24OOG:V,z:0i1mm _;
A long-lived BSM particle has bigger i — oo o0 ae e ssom
timing compared to SM particles. T 3
L s I ¥, s =
) e -
107 -
107
2.6 fo” (13 TeV) -
(q\| 'S L L L I ) L B 2 4 6 8 10 12
QI ¢ Data ] t., (ns)
30-12?CMS t Multijet  ~ |
[%) - -1 mm ]
o 01— 10mm . : : :
R 100 mm Displacement information of the object from the
0.08~ | - 1000 mm interaction point.
: i i . .
0.06]- : - A long-lived particle can decay far away from
- B the interaction point.
0.02 .
’_- h.,-..l-'i-lg-:: | | 1111 | 1111 | | I.I.I. ol -I-:

0 .
-1 -05 0 05 1 15 2 25 3

log, (IP,)



)], e

e Ul
110
|




Optimizing the selection
Event selection and cutflows

An event selection consists of a sequence of selections, i.e. cuts applied on event
variables. Usually multiple event variables are used in an event selection.

* e.g.tofind a Z boson, first require 2 electrons or 2 muons, then make sure they
have opposite electric charge, then calculate their invariant mass and require
the value to be around the Z mass of 90 GeV, e.g. between 70 and 100 GeV.

Cutflow: The sequence of cuts leading to a selection (and the number of events
surviving them, or the selection efficiencies).

e Selection efficiency: Number of events surviving the cuts over number of total
events.

Selection region / category: The phase space defined by a sequence of cuts.

Signal region / category / search region: A selection region where signal can be
observed with high significance.
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Optimizing the selection

Example cutflow table from a CMS supersymmetry analysis:

Event selection and cutflows

Selection pp — tt,t =ty pp — bb,b — bx! pp — 49,9 — qx°

m; = 950 GeV my = 1000 GeV mg = 1400 GeV

My = 100 GeV myo = 100 GeV myo = 200 GeV

Niet > 2 99.9+0.2 98.84+0.5 99.1+0.5

Ht > 300 GeV 98.7 £0.4 98.3+0.5 98.9+0.6

HSs > 300 GeV 745+1.2 79.6+14 88.1+14

HMss/Hr <1 73.6+1.3 782+14 86.8+1.5

Nmuon = 0 58.7+14 779+ 14 86.7 +1.5

muon) o =0 58.2+1.4 77.8 414 86.7 + 1.5

Nutectron = 0 4724+ 1.4 775+ 1.5 86.4+ 1.5

electron) 464 +1.4 77.24+1.5 86.2+1.5

o™ _ 455+ 14 76.8+1.5 85.6 + 1.5
isolated tracks . . . . . .

Nphoton = 0 43.8+1.4 752415 83.6+1.6

A ppmiss j, > 0.5 43.6+1.4 751415 835+ 1.6

A ppmiss j, > 0.5 41.1+14 70.6 £1.6 78.7 +1.7

Apymiss ;; > 0.3 39.8+1.4 67.0+ 1.6 744+1.8

A(PHITniss,]'4 > 0.3 385+t1.4 64.51+ 1.6 7144+1.9

Event quality filter 36.7 1.4 61.4+1.7 67.8+19

12



Optimizing the selection
What is optimization?

Optimization of a selection involves finding the best selection (best cutflow) out of all
possibilities which leads to the best sensitivity.

Sensitivity: The capability of an analysis to observe a given physics process.
e.g. This analysis is sensitive to supersymmetric particles with mass 3 TeV.

e Sensitivity implies high expected signal significance.

Significance: A measure of the probability of rejecting the null hypothesis (i.e.
background). (Formal definition is more complex, but we won’t go into it here.).

* A commonly used simple approximation:
Nsignal
\/st'gnal + Nbackground

* But more formal methods are used in real analyses.

S =

Optimization involves finding the selection that gives the best significance for a
reasonable amount of data as well as results in the least amount of uncertainties.

Optimization methods: “by eye”, random grid search, machine-learning-based, etc.

13



Optimizing the selection
Rectangular cuts “by eye”

> I B E
5 108 oS i .. :
o 10 3 T . § Missing hadronic transverse momentum:
° . E
?g 104 N -Z:DW - n jets
c 0 - : —get.
L% 10; AAA -W : o HT _ H?mss _ Z p'f_%ftl
10°g . IZI:M E ' i
10°8 % < This one looks easy, doesn't it?
- ;
e 1 Somewhere around 300 GeV/?
1 E .. :
_ 1 The original CMS SUSY analysis used
10™ 5
e w3 Hymiss > 250 GeV
0 200 400 o600 800 1000
A (GeV)
E E | CLMSI 15—
Hadronic transverse energy: o 02k ot s o
. ~ ; -Z—>vv
njets % o aco
7€t . -
Hr= ) pr’ S 105 ;|
’i C tt
How about this one? Not so obvious... 1 )
The original analysis used Hy > 500. —
Maybe we should try several random H; values and 10 B
find the Hy that gives the best significance? ) | | li
10 - e
: : : 500 1000 1500 2000
But what if we have many selection variables? H. (GeV)
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Optimizing the selection
Rectangular cuts by "Random grid search”

» Efficient sampling for rectangular cut optimization.
* We would like to find a selection that characterizes the signal final state.

* Most natural way to do this is to use the signal events themselves as candidate cut sets
(i.e. use values for each cut variable in each signal event as cut candidates).

e Random Grid Search (RGS) tries every cut set, implements the selection, and finds the
selection that is most optimal (e.g. maximizes significance, etc.).

* Easily generalized to all types of cuts (interval, box, staircase, etc.)
* Becomes very efficient for optimization over multiple parameters.

Conventional grid search | RGS e
AL AL
A 4 ‘ , signal N & “ A signal
._ . A “A: a 'y .‘ . LA ry &
® “b A AA ® . - A‘*
o o a a |4 ® . o o g “* L pUN S—
o ) o o4 ® : ° 4 Ag & A A ™ ® o4 ® : . - Yy S—
o e® .‘A o o o® S
o ‘ ..s 3 A 4 ® ) (@) A © *
¢ ° e &
® o0 o @ e o o
® * g *
background ®® background 0 O
e o ® o
Q ) (0]
@ @
€I I

P. C. Bhat, H. B. Prosper, S. Sekmen, C. Stewart, arXiv:1706.09907 15



Optimizing the selection
Rectangular cuts by "Random grid search”

e $

2-dimensional cuts optimization using RGS

II| I IIIlIIII I IIIIIIII I IllIIlll I IIIIIIII I IIIIIIII I IIIIIIII LA
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o SO3D Zye, (< 6): 7.68 5355 ’ . L
081 0<z<3 ’f' : 1 < = Different colors show significance values.
-« 3</<5 7 k‘ .
06l 5cz<8 E Red is the best.
oo i Optimal selections found to be SO3a, SO3b.
0.4 -
B . 0'5_..‘.‘..".'.t.'..'.‘:.'.l.‘..'..‘.‘..l..'.’..'..'.I""I""_
- : ik Complementing cts:
0.2 . L S08ain 2 11,nb 22, MW 20, jp_>263.0
i - 0.4 == S0%: 126,10 >3, W 0,5, 3116 ]
O-| I win IS I I : ........ E, .............. )
107 10 107 10™ 107 10 107 1 O3a§g| L
b CRHED TR « fleetsBG 10
. . . No N TSR HEEES: T élQZﬁG.no.rmall.zed.toJ E
2-dimensional space of variables. 0.0 -5_555521.555*&55555;5:::: ................ S
SO3a and SO3b selections are plottedin ©» |1 kw0
blue and green lines. 01—:_
They are shown to effectively separate

- o Lt T I Rt
signal and background 0 500 1000 1500 2000 2500 3000

My, (GeV)
P. C. Bhat, H. B. Prosper, S. Sekmen, C. Stewart, arXiv:1706.09907 10



Optimizing the selection
Machine learning methods

Machine learning methods are very useful in getting optimal event selections.

Classification methods are used to categorize events into various groups, e.g.
signal or background.

They are also used in classifying objects, by obtaining the best identification
criteria for objects. They are used for separating b-jets from light jets, separating
boosted particles from non-boosted particles, separating long-lived particles from
promptly decaying particles, etc.

Traditional methods like boosted decision trees have been used for years, and
greatly helped in discoveries like single top quark and the Higgs boson.

Nowadays neural networks, even deep neural networks are becoming more
mainstream, also due to wider availability of GPUs.

ML methods are especially useful for cases with small signals buried under large
backgrounds. When rectangular cuts do not yield sufficient sensitivity, they are
applied to extract the utmost sensitivity.

They are recently tested for generic searches for anomalies / signals in data.

17



Optimizing the selection
ML: Decision trees

* A decision tree is a binary tree, a sequence of cuts paving the phase-space of the
iInput variables.

* Repeated yes/no decisions on each selection variable is taken for an event until a
stop criterion is fulfilled. Each node splits the data according to one attribute.

* For each variable, find the splitting value that gives the best separation.

* Trained with labeled data to maximize the the probability of assigning random events
correctly as signal or background.

Root
node
xi>c1/ \xi <cl e Similar to rectangular cuts, but
e ™~ each selection depends on the
previous one. Selection sequence
s 7N effects the result.
;> = ¢ <C\i :/’M3 " <C\i * Boosting: Combine information
from multiple trees.
B S S &
/ \
xk>cd4 xk<cd
¥ \

B S



Optimizing the selection
ML: Neural networks

* Inspired by the brain — neural networks are composed of “artificial neurons”.

* Approximates and outputs a discriminator which quantifies how signal-like the
events are.

The recipe:

Input Layer Hidden Layer Output Layer

e Start from a set of input variables fed
to the input layer

* For each neuron in the hidden layer,
compute a weighted sum of the input

.;.f"l a/ y3 3 P variables.
ol e o A e Transform the output with an
~— ’ /W /) activation function
iR }11 “1 * Repeat the operation for each neuron
N sy TR\ V- Yy ey of the next hidden layer
T T e * QOutput is a weighted sum (average) of
” the previous input layers.

19



Optimizing the selection
ML: Object classification

O4CMS Simulation Preliminary 13 TeV
. IIlIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIII_L

2017 detector simulation
MVA Based ID

ML methods are used for object identification
and classification. They provide better
performance than cut based identification.

Electrons

® Cut Based ID

B ECAL Barrel

B ECAL Endcap °

o
N
a

Better classified objects allow better signal
characterization, optimization and
measurement.

o
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Optimizing the selection

ML: BDTs In searches

3591 (13 TeV)

1200 1 rrrrrfrrrrprrrrrrrr et
CMS used BDTs to observe and make £ Lems ¢ Data i ]
. — s K stat. @ syst.  [_| Zyjets ]
measurements on the single top quark D g R -
. — - s- and tW- - isidentifie oton —
production. 000 |~ Sl g
Fun fact: Single top observation at Tevatron S0 1~ E
DO (which used both BDTs and neural 400~ =
networks) was a historical analysis marking 200 =
the recognition of these methods in HEP. : .
_5 1.5
2
(4p) UL DL L L L L L L L DL DL DL &)05 , . , \ . . " . A
S [ ATLAS Preliminary gm0 it rte) | £ 0 A28 4 5 6 7 8 9 10
o 10°E 5-13Tev, 79.8 10" i Diboson E ]
% — 0 lepton, 3 jets, 2 b-tags [:gingletop = BDT output
T ~ pY > 150 GeV W ]
T -Z .
10° = gpe(i‘faiztzlan:l!(,ground 3
- — SMVH — Vbb x50 -

10°

ATLAS observed Higgs in the decay channel
of H —> bb in 2018 thanks to BDTs.

BDTs were trained for different selections
and their results were combined.

-
o
\)

—

o1 a0 O
TTTTTTTT
l

Data/Pred.

o

1 | | | | | [ [ BRI R R B
-1 08 06-04 02 0 02 04 06 08 1
BDT,,, output
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Optimizing the selection

ML: DNNSs In searches

DNN example: CMS analysis measuring Higgs properties in Higgs production in the
ttH channel, with H —> vyy.

Higgs production in tHg channel has a similar final state to ttH, and also constitutes
a background we must get rid of. Trained 2 DNNs for this purpose

CMS Preliminary 137 fb' (13 TeV)
) Ity —tHQq x 200
< [ tty + jets _
S 1°E Eyy +jets i x10
€ £ mEEvyy+2bjets —+-Data
S0 v+iets il Stat. Uncert.
10°
10

DNN to discriminate ttH + tHqg from the

0.2 0.3
BDT-bkg

rest of the backgrounds.

CMS Preliminary 137 o' (13 TeV)
S [ MWy ——tHq x 200
= B I tty + jets — H#HXx 10
o
> Ll vy +jets
2 9F mmyezpes —+-Data
L?>_I) - [y +jets i Stat. Uncert.
10?
10

DNN to discriminate ttH from tHq and
the rest of the backgrounds.
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Optimizing the selection

ML: DNNSs In searches

CMS analysis searching for new long-lived particles decaying to jets uses a jet
classification DNN. Here is how the architecture looks:

T g T
S (? {J_c_lz_@s_z(?_u?__________________: ‘ aLclauss/a'u_j ‘ Llass
~ : *~\l
Input features 1D convolutions Dense
Dense
(2} o w (2]
Charged PF sllall sl
candidates | —» fr ,:I Z\=| :; —> ol o Predict jet
(25 x17) © || »||» @ > '§ '§ class
Neutral PF sllellglle _‘OC_,J ol @ = | g, LLP)
candidates | = |E||S|[E|[E| > |E| > |o| =
(25 x 6) S o 8|5
ol Dense
Secondary SIS SIS Q|2
vertices =4 IEIEE -% ol o
(4 x12) Nilefle||« = IS 10N (S Predict jet
8> |T| > |g|| 2| = domain
Global (14) > 8 213 (simulation,
= data)
LLP c19 (1) > o
(I ]
. E E T|8 : /‘
g ’_________)\__a_L_g_oIr}@i_n_/_?}? _____________ q:, E E <:\)\ aLdomain/aw l A Ldomain
X g Ta N |
S
—» Forward 777777 Backward Feature I Label B Domain
propagation ) propagation extraction prediction prediction

CMS EXO-19-011, arXiv:1912.12238



Optimizing the selection
Multiple regions

An analysis usually consists of multiple selection regions. Why?

e SM measurements: Design signal regions for

e different production/decay channels (e.g. different Higgs production channels)
* to focus on different kinematic properties (e.g. boosted top vs. non-boosted top)

* New physics searches: New physics models have (multiple) free parameters
—> new particle properties like masses, branching ratios, etc. are variables
—> design dedicated signal regions to cover different particles and all signatures
with highest sensitivity.

Definition of signal
regions from a CMS
SUSY search looking
for different SUSY
particles: gluinos,
squarks, stops,
sbottoms.

-

b—jet multiplicity

"w_ii;""'":‘ _______ — : 2

el € S& :

ol © 1@

& e (el
2 3 4 5 >6

jet multiplicity

Different multiplicities dedicated to
different sparticles, or different decay different SUSY particle masses or
model. Colors show BG composition

A .
3 High H.

1200 | =,
: Medium H;

750 | S

[ Low H;

4501} )

30 200 >

E™* [GeV]

Different regions dedicated to

decay kinematics.
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Optimizing the selection
Analysis variables, bins

{\

Once the signal region selections are done, we must decide which variable(s) we will
use for testing the signal hypothesis with data.

Usually, these variables are divided into bins, i.e. discrete intervals.

137 b (13 TeV) 137 b (13 TeV)

1 I I 5 MS 'm‘m; : Ie ata 5 5 MS 'mlm; ' le‘ Iaa
mrt bins in two signal g 10 poMS oS g e s OO I g e
i I . © 10® - 0-jet signal category -‘I,)V;’"-Yan 2 10* £ 1-jet signal category -‘?V?I'Ya"
regions in a ar o s @ - v
102 10°
matter SearCh . ‘.-o- . -‘rll::resonant -\l:‘;‘r:resonam
1 ‘+‘MM ol T
-1 ; ;
CMS 35.9 fb! (13 TeV) 10 .- 1 ~ +
0eTT T T T T T T T T T T T T T T T T T T T2 1072 \
(- = E _
re) = Top category E 107 %
.y W ¢ Data [ttt orsinglet .l N N S——
on VFE -- Tttt [ E ' = <F ' '
o - B W(—Iv)+jets 7 8 °F
O 10°= M_(Tev) - - TSttcc @ Z(—vv)+jets_| =l . N T
L - [0.8,1] 3 500 1000 1500 500 1000 1500
10 . [1,1.2] [1.2,1.6] _ m, [GeV] m, [GeV]
1 E

< = 2-dimensional binning in razor variables Mg and Rz in

a CMS SUSY analysis.

__________________ FRE R e analveie has 8 stonal regions defined by et brjet
, = lepton, W and top multiplicities.

Data / pred.

The plot is shown for the boosted top signal region.
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Background estimation

SM backgrounds measured at LHC

Standard Model Total Production Cross Section Measurements ,\S,,tjyt“jg,zo

pp

tt—chan

ww

Wt

wz

Z7
ts—chan
ttW
ttZ
WWW
WWwWZ

107* 1073 1072 107!

lIlllI"I T T rr
o =96.07 £ 0.18 + 0.91 mb (data)
COMPETE HPR1R2 (theory)

r = 95.35+ 0.38 + 1.3 mb (data)
COMPETE HPR1R2 (theory)

o =190.1+0.2 + 6.4 nb (data)
DYNNLO + CT14NNLO (theory)
o = 112.69 + 3.1 nb (data)
DYNNLO + CT14NNLO (theory)

o =98.71 + 0.028 + 2.191 nb (data)
DYNNLO + CT14NNLO (theory)

o = 58.43 +0.03 + 1.66 nb (data)
DYNNLO+CT14 NNLO (theory)

r = 34.24 + 0.03 + 0.92 nb (data)
DYNNLO+CT14 NNLO (theory)

r = 29.53 +0.03 + 0.77 nb (data)
DYNNLO+CT14 NNLO (theory)

r=2826.4+3.6+19.6 Eb (data)
top++ NNLO+NNLL (theory)

o —=2429+ 1.7 + 8.6 pb (data)
top++ NNLO+NNLL (theory)

oc=1829+31+6.4 E (data)
top++ NNLO+NNLL (theory)

o = 247 + 6 + 46 pb (data)
NLO+NLL (theory)

oc=289.6+1.7+ 7.2~ 6.4pb (data)
NLO+NLL (theory)

o = 68 + 2 + 8 pb (data)
NLO+NLL (theory)

o =130.04 + 1.7 + 10.6 pb (data)
NNLO (theory)

o =68.2+1.2+4.6pb (data)
NNLO (theory)

r=51.9+2+4.4pb (data)
NNLO (theory?

o=61.7+28+ 4.3 3.6 pb (data)
LHC-HXSWG YR4 (theory)

o =27.7+3+2.3-1.9pb (data)
LHC-HXSWG YR4 (theory)

=22.1+6.7-53+3.3-2.7pb (data)
LHC-HXSWG YR4 (theory)

o =94+ 10 + 28 - 23 pb (data)
NLO+NNLL (theory)

o=23+13+ 3.4-3.7 pb (data)
NLO+NLL (theory)

o =16.8+ 2.9+ 3.9 pb (data)
NLO+NLL (theory)

o =51+0.8+2.3pb (data)
MATRIX (NNLO) (theory)

o=24.3+0.6+0.9pb (data
MATRIX (NNLO) (theory,

o =19+ 1.4-13+1pb (data)
MATRIX (NNLO) uheory)

o=17.3+0.6+0.8 pb (dat

a)
Matrix (NNLO) & Sherpa (NLO) (theory)

oc=7.3+0.4+0.4-0.3pb (data)
NNLO (theory)

oc=6.7+0.7+ 0.5 - 0.4 pb (data)
NNLO (theory)
oc=48+0.8+1.6-1.3 pb (data)

NLO+NNL (theory)
o = 870 + 130 + 140 fb (data)
Madgraph5 + aMCNLO (theory}
o = 369 + 86 — 79 + 44 fb (data)
MCFM (theory)
o = 950 + 80 + 100 fb (data)
Madgraph5 + aMCNLO (theory)
o = 176 + 52 — 48 + 24 fb (data)
HELAC-NLO (theory)

o =0.65+0.16 - 0.15 + 0.16 - 0.14 pb (data)

Sherpa 2.2.2 (theory)

o =0.55+0.14 + 0.15 - 0.13 pb (data)
Sherpa 2.2.2 (theory)
Ll Ll Iﬂ

n
L llllld

A
ATLAS Preliminary " o
Run 1,2 /s =7,8,13 TeV C‘;“
(m]
A
)
o
A
o)

5 SM processes that
OA can constitute

a  backgrounds at
g LHC searches.
m ]

4
a Theory
m]
nB LHC pp Vs = 13 TeV
Data
n _ stat
a stat @ syst
(o)
O LHC pp Vs =8 TeV
A Data
o _ Stat
n stat @ syst
] LHC pp Vs =7 TeV
Data
D _ stat
stat & syst
IIIII“'I |||||"|I IIIllld L.l LLll llllll IIIIIIIIIII

10 10! 05 1.0 15 2.0
o [pb] data/theory

1 10t 102 10® 10* 10°

JLat
[b]
50x1078
8x1078
0.081
20.2
4.6
3.2
20.2
4.6
36.1
20.2
4.6
3.2
20.3
4.6
36.1
20.3
4.6
79.8
20.3
4.5
3.2
20.3
2.0
36.1
20.3
4.6
36.1
20.3
4.6
20.3
36.1
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79.8
79.8
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Background estimation
-. Generic idea

We need to estimate the amount (and shape) of the irreducible backgrounds remaining
In the signal region after signal selections.

This is a crucial part of analysis. Numerous methods exist and still being devised.

Use predictions from Monte Carlo simulation:
e Contains all our knowledge on theory and detector.
* We precisely know what physics MC events have.

* Long but persistent way from roughness to precision.

Use data-driven estimation methods:
Common principle: use control regions

e Control region: A selection where background of interest is
dominant while signal and other backgrounds are negligible.

* Must be disjoint from / not correlated with the signal region.

e Obtain information on BG from the control region and
extrapolate it to the signal region.

Data and MC can work together:
e Data is used for fine-tuning MC.

e MC shapes of kinematic variables are used in data-driven methods.
28



Background estimation
Using control regions and MC ratios

Event sample legend
ZL = Zero Lepton; SL = Single Lepton; LDP = low A(’ﬁmm; Zee=7Z-> e'e; | Zupu=2Z- p'u;
signal sample top & W+jets control QCD control Z to vv control Z to vv control
sample sample sample sample
ZL SL LDP Zee Zup

‘ 2 Loose 2
Npjer =1 *ff* ° b-jet ©
‘ L tagging T

E,™Miss axis E,Miss axis E,™Miss axis E,Miss axis E,Miss axis

* Find control regions by reverting some of the signal region selection criteria.
* Find the amount of BG in every bin i in the control region.

* Then multiply this amount with BG expectation ratio between signal rand control
regions obtained from MC:

NSR, i, MC
NSR, i,estm BG . NCR, i, data
BG o NCR, i, MC BG
BG
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Events / bin

Data / pred.

Events / bin

Data/MC
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Background estimation
Using control regions and MC ratios

c
£
0 lepton signal region. P

3
>
L
Single lepton + b jet =
control region for tt+jets
O
=
S
©
Signal and control regions in -
the CMS SUSY analysis with
razor variables.
=
o)
@
3
Single lepton + Ob jet = » 3
control region for W+jets
O
Reverted Admin QCD 2
control region. <
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Background estimation
~. Replacing particles: Z —vv from Z —l*l-

Z(—vv)+jets is an irreducible BG for hadronic searches that use high MET. However
there is no straightforward control region where Z(—vv)+jets is dominant.

But we can use the Z(—I+)+jets events to estimate the BG contribution from Z( —vv)
+jets, since Z—vv and Z—Itl- events have the same kinematic characteristics.

* Select a I+I- events in a control region with I+I- invariant mass in the Z mass range
(we assume this control region is signal-free).

 Count the leptons as MET, i.e.: add lepton momenta to MET and recalculate MET.
* Apply the MET cut and count the observed events.
 Z(—vv)+jets can be estimated as:

SR, i, MC : :
SR, i,estm N7 CR, i, data BR(Z — vv) ratio of branching
Nz, — A CR,i,MC Ny ' >
N, BR(Z — ¢0) ratios

yAd

* The estimate is corrected by the ratio of Z —> vv/Z —> Il BRs in order to have a
correct estimate for the yield.
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Background estimation
Replacing particles: Z —vv from Z —I*-

Estimating Z(—vv)+jets from Z(—I+I-)+jets has
one issue: Number of Z(—l+I-)+jets events in
the control region is too low.

Another option is to use y+jets events since o CMS _ 39m(8Tey)
* y+jets and Z+jets kinematics are é 0k CE %th‘}ﬂ” ?
reasonably similar. gl g p2i .
* The BR ratio in the estimate formula is i 1 ?
replaced by Z/y cross section ratio. 10 -

e \We also take into technical factors like 1

photon purity, etc. 10"
<§J A Bommlomromme ]
Single photon control = < I
region for y+jets in the S | M
. = e e = e = === =
CMS SUSY analysis Nyl YEyeRYLYeRYLEYgYEy
. R ocloloNeoh Noloelolol NolloelolNoll JielNololl e loll
with razor variables. NSy EN OSSN SydgNSFINg

[ e e e I e e e e B e e e e e e e e e e R e e '}



. Background estimation
-. Sideband method

Used in searches for resonances, where the
BG has a smooth, well-described shape, and
the signal peaks over the BG.

* Define a signal region, and find signal-free
control regions, i.e. sideband regions
around the signal region.

* Deduce the shape of the BG from the
sidebands (polynomial, exponential, etc.?)

* Extrapolate the BG in sidebands to the
signal region.

* Either count the extrapolated events under
the signal peak — or -- fit the data
distribution to BG shape + signal shape
and extract the parameters of the BG
function.

Events / 2 GeV

]
-
-
3

17500

15000

12500

10000

—

sideband
region

|

signal
region

sizldbbrgd
reg@an

105

120

135

m,, (GeV)

Figure from P. Govoni HCP2011 lectures
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- Background estimation
~. Sideband method

Used in searches for resonances, where the
BG has a smooth, well-described shape, and
the signal peaks over the BG.

* Define a signal region, and find signal-free
control regions, i.e. sideband regions
around the signal region.

* Deduce the shape of the BG from the
sidebands (polynomial, exponential, etc.?)

* Extrapolate the BG in sidebands to the
signal region.

* Either count the extrapolated events under
the signal peak — or -- fit the data
distribution to BG shape + signal shape
and extract the parameters of the BG
function.

0

137 b (13 TeV)

— CMS ¢ Data «+« Linear fit with unc.—
__ I tt [ ]Single t —:

o m(g) = 1300 GeV -

I IIIIIIIIIIIIIIIIIII |IIII|IIII|IIII|IIII|IIII
I Z+jets Bl W+jets

B Other SM [ QCD multijet

--- m(g) = 1700 GeV -
praseee : Subleading jet m .
: : in Z signal window .

=== __ __ === n"TN - L ' 1 i PRy e

40 50 60 70 80 90 100 110 120 130140

Leading jet mjet [GeV]
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Background estimation
Fit to an analytical function

Sometimes the BG is well-described by an analytical function. If so:
* Find a control region dominated by the BG.
* Find an analytical function that describes the BG well.

* Fit the data to this analytical function in the control region and find the parameters
of the analytical function.

* Extrapolate the fit to the signal region.

- 2 ~ ,
_ Cms 859107 (13TeV) t [ CMSPreliminary (s=8TeV +4-Data
16000 . — D 10
8 - H—vy All categories ] Lﬁ Razor MultiJet Bofo =193 Total Bkgd
= 14000} S/(S+E) weighted : 2 1] L —1 b-tag
c ¢ Data ] 10°
o 12000: __S.Bfit : - — = 2 b-tag
'-_'é 10000 % e B component N
% 8000:— - 1o _: 10 E_
=) - [J+20 . -
Q 6000[ - -
= - . 15 l
5 4000 - =
+ - ] -
. 2000F E 1l
2 0_ |||||||||||||||| Loy v v by vy ||||||||Iv'l'q 10?1.1..1...11L, L i e e e e s
O 3F
E 2 2F
: D Jpeee—e-
E + 500 1000 1500 2000 2500 3000 3500 4000
= Q Mg [GeV]
4 1 E

3
(o)
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<
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Background estimation

-~. Matrix —or ABCD - method

When there exist two variables x and y for which
the BG is uncorrelated, i.e. factorizable:

BG/.. .\ _ ¢BG/.. BG/,
7o (y) = 70 (@) - 77 (y) v 4
* Apply all cuts except those on x and y on data Va
* Divide the x-y plane into 4-regions: s+s = Bo Asiss > s
BG enriched sig enriched
* When there is no signal, we have &
Y2
BG BG BG BG
N A N, C N A NB —> Ds.86 = Dae Csia6 = Cag
NgG NgG ) NCBG NSG BG enriched BG enriched
Y1
* |n the presence of signal, A will be X, X, X3 X X
contaminated by the signal. But we can
estimate the number of BG events in A from
BG pnTBG :
NBG _ N~ Ng Note: Always beware the signal
NEG T~ contamination in the control

regions. Add it as a systematic.
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Background estimation

Matrix — or ABCD - method

When there exist two variables x and y for which
the BG is uncorrelated, i.e. factorizable:

[P (@, y) = fP%(@) - fP4(y)
* Apply all cuts except those on x and y on data

* Divide the x-y plane into 4-regions:
* When there is no signal, we have

BG BG BG BG
NA _ NC NA _ NB

BG BG” BG BG
NB ND NC’ ND

v
Impact Parameter significance

* |n the presence of signal, A will be
contaminated by the signal. But we can
estimate the number of BG events in A from

BG n1BG
NC NB
BG
ND

BG _
N7 =

CMS tt+jets cross section measurement
in the muon-+jets channel.

- tf+jets -QCD CMS Preliminary 20 pb’

—

O

O a N W »h 00 O N O © O

..........

oy

Rk
0.8 0.9

0 0.1 02 03 0.4 0.5 0.6

Combined Relative Isolation

0.7 1

Note: Always beware the signal
contamination in the control
regions. Add it as a systematic.
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Background estimation
Fake rates method

The ratios of objects found by a tight identification over objects found by a loose
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD in a signal region that has leptons. Real
leptons come from the signal and fake leptons come from QCD (jets faking leptons).
We define two event selections with loose and tight lepton ID criteria, which can be
decomposed as:

L real fake
NlOOSC — Nloose "~ 4 V]oose
_ real fake
Ntz'ght — Ntzght - Ntight

kE _ atk k _ real real fake fake
€ = tz'ght/Nloose — = N N

loose loose
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Background estimation
Fake rates method

The ratios of objects found by a tight identification over objects found by a loose
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD in a signal region that has leptons. Real
leptons come from the signal and fake leptons come from QCD (jets faking leptons).

We define two event selections with loose and tight lepton ID criteria, which can be
decomposed as:

Get these counts

f ) [ fake
from data QK\\\\\\\!VQooseJ — .PVZ;ZZB ~ LV oose
( ] _ real fake
N tight| — N tight - N tight
L — k - real real fake fake
N tight /N — = N N.

loose loose
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Background estimation
Fake rates method

The ratios of objects found by a tight identification over objects found by a loose
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD in a signal region that has leptons. Real
leptons come from the signal and fake leptons come from QCD (jets faking leptons).
We define two event selections with loose and tight lepton ID criteria, which can be
decomposed as:

Get these counts : i real fake
from data \LNlooseJ —— Nloose — loose
‘N ) real |, nrfake
N tight | — N tight N tight
k _ k L real|nrreal fake
N tight /Nloose — = (€ loose +?Nloose
Find the ID efficiency, using e.g. tag Find this efficiency, i.e. the fake rate
and probe method. using e.g. a QCD control sample (e.g. low

MET)
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Background estimation
Fake rates method

The ratios of objects found by a tight identification over objects found by a loose
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD in a signal region that has leptons. Real
leptons come from the signal and fake leptons come from QCD (jets faking leptons).
We define two event selections with loose and tight lepton ID criteria, which can be

decomposed as:
—> Solve the two

Get these counts ) . o B fake equations
_ re u simultaneously to get
from data \LNZOOSQ B Nloose — these numberz °

( ) real
LNtithJ — Ntzght + N

k _ k L reallntreal fake
N tight /Nloose — = (€ loose t loose]
Find the ID efficiency, using e.g. tag Find this efficiency, i.e. the fake rate
and probe method. using e.g. a QCD control sample (e.g. low

MET)
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Background estimation
Fake rates method

The ratios of objects found by a tight identification over objects found by a loose
identification is widely used as a BG estimation tool.

Suppose we would like to estimate QCD in a signal region that has leptons. Real
leptons come from the signal and fake leptons come from QCD (jets faking leptons).
We define two event selections with loose and tight lepton ID criteria, which can be

decomposed as:
—> Solve the two

Get these counts ) . o B fake equations
_ re u simultaneously to get
from data \LNZOOSQ B Nloose — these numberz °

( ) real
LNtithJ — Ntzght + N

k _ k . reallntreal fake
N tight /Nloose — = (€ loose t loose]
Find the ID efficiency, using e.g. tag Find this efficiency, i.e. the fake rate
and probe method. using e.g. a QCD control sample (e.g. low
MET)
: : ke fake
nts from fake \rfa =
Finally obtain the number of BG events fro Nloose Ntzght Npa
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Background estimation

-. Tag-and probe method

Tag and probe (TP) is a data-driven method used for measuring particle efficiencies.
It is used for obtaining trigger, reconstruction, identification efficiencies. Mainly used
for leptons.

For TP, we need a mass resonance decaying to the object whose efficiency we want
to measure (e.g. J/psi, upsilon, Z)

We select two objects, a tag object and a probe object.
e Tag object : Tight selection/ID criteria- we assume this is a real object.
* Probe object: Very loose selection/ID criteria.

We compute the diobject invariant mass of the tag object + probe object.

e |f the invariant mass is close to the resonance mass value, we assume that the
probe object was a real object. Otherwise it should be a fake object.

We take the real leptons inside the resonance mass window and apply on them the
criteria of the selection, whose efficiency we want to measure

Selection efficiency is computed as

€ . . Nin mass WindOW/Nin mass window
selection — < Vgelection total



Back_grour]d estimation _
Validating the estimates

BG estimation methods must always be validated with closure tests or independent
validation regions, or alternative methods.

Closure tests : Validate the internal consistency of the method, e.g. validate the method
using purely MC events.

Validation regions : Validate the method in independent dedicated regions. These can
have a composition similar to the signal regions but be dominated by BG. Estimate
should be equal to data.

Alternative methods : Estimate the BG with multiple methods and compare the results.

CMS 35.9 fo' (13 TeV
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