Beyond the Standard Model Part II

Kwang Sik JEONG

Pusan National University, Korea

26th Vietnam School of Physics

Nov 30 – Dec 11, 2020

Axion Feebly Coupled Light Particle

2-1. Introduction- Axion

- Axion Axion-like Particle (ALP)
 - Pseudo Nambu-Goldstone boson of spontaneously broken U(1)

- Periodic: $\phi \rightarrow \phi + 2\pi f$

axion decay constant f = U(1) breaking scale

- Shift symmetry $\phi \rightarrow \phi$ +(constant) to control axion mass and couplings
 - Interactions suppressed by f
 - Mass from explicit breaking of the shift symmetry

$$m_{\phi} = \frac{(\text{shift symmetry breaking scale})^2}{f}$$

Feebly interacting light particle for large f

2-1. Introduction- Axion

- Axion Portal
 - Perturbative shift symmetry $\phi \rightarrow \phi$ +(constant)
 - 3 types of interaction: Yukawa, derivative and anomalous couplings

perturbative
$$\begin{pmatrix}
m_{\psi}e^{ic_{1}\frac{\phi}{f}}\bar{\psi}_{L}\psi_{R} + \frac{\partial_{\mu}\phi}{f} (c_{2}\bar{\psi}\gamma^{\mu}\gamma_{5}\psi + \cdots) \\
U(1) \text{ current density} + \frac{c_{3}}{32\pi^{2}}\frac{\phi}{f}F_{\mu\nu}\tilde{F}^{\mu\nu} \\
\end{pmatrix}_{\text{non-perturbative}}$$

Physical quantities should be invariant under chiral field red: $\psi_{L,R} \rightarrow e^{\pm i\alpha \frac{\varphi}{f}} \psi_{L,R}$

- Potential below the QCD confining scale $\Lambda_{\rm QCD}$ in $c_2 = 0$ basis

Integrating out heavy meson for $f_{\varphi} \ll f$, $V_{\text{eff}} = -m_q \Lambda_{\text{QCD}}^3 \cos\left(\frac{\phi}{f}\right)$

2-1. Introduction- Axion

- Axion Portal
 - Potential to be probed by cosmological, astrophysical and laboratory observations
- Examples
 - QCD axion
 - Anomalous coupling to gluons \rightarrow Natural solution to strong CP problem
 - Dark matter candidate: cold, warm, or hot
 - Natural inflation
 - Very flat potential from axion

$$V = \Lambda^4 \left(1 - \cos\left(\frac{\phi}{f}\right) \right) \text{ with } f \ge M_{Pl}$$
$$n_s \approx 1 + 2\frac{V''}{V} - 3\left(\frac{V'}{V}\right)^2$$
$$r = \frac{A_t}{A_s} \approx 8\left(\frac{V'}{V}\right)^2$$

I. Introduction- BSM

- Examples
 - Relaxion

Cosmological selection of the electroweak scale

- Based on coupling to the Higgs sector

$$\Delta V = -\mu_{\phi}^2 \cos\left(\frac{\phi}{F}\right) |H|^2$$

- \rightarrow Relaxion evolution is tied to EWSB for μ_{ϕ} above the weak scale
- Relaxion-Higgs mixing after EWSB

For sub-MeV to multi-GeV relaxion, constraints from rare K and B meson decays and beam-dump experiments

QCD axion Solution to the Strong CP problem

- Axion Potential
 - Spontaneously broken PQ symmetry → Axion NG boson
 - Chiral anomalies \rightarrow non-derivative axion couplings

 $J^{\mu}_{PQ} \xrightarrow{A^{\rho}} - \text{QCD anomaly} \quad \frac{N_{DW}}{32\pi^2} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu} \rightarrow \text{Solution to strong CP problem}$ Domain-wall number

• Axion-dependent field redefinition,

$$\Delta L = \frac{N_{\rm DW}}{32\pi^2} \frac{a}{f} G_{\mu\nu} \tilde{G}^{\mu\nu} - \bar{q}_L M q_R + \text{(derivative couplings)}$$

After QCD condensation, potential for axion and mesons

$$V = -\Lambda_{\text{QCD}}^4 \cos\left(N_{\text{DW}}\frac{a}{f} + \sum_{i=u,d,s}\frac{\varphi_i}{f_i}\right) - 2\Lambda_{\text{QCD}}^3 \sum_{i=u,d,s} m_i \cos\left(\frac{\varphi_i}{f_i}\right)$$

- Breakdown of $U(1)_{PQ}$ to $Z_{N_{DW}}$
- Mixing between axion and neutral mesons, π, η, η'

- Axion Potential
 - Integrating out heavy mesons

 $f_{\pi} \simeq 130 \text{MeV}, \ m_{\pi} \simeq 135 \text{MeV}$

$$V_{\rm eff} = -f_{\pi}^2 m_{\pi}^2 \sqrt{\frac{m_u^2 + m_d^2 + 2m_u m_d \cos\left(N_{\rm DW}\frac{a}{f}\right)}{(m_u + m_d)^2}} \left(1 + O\left(\frac{m_{u,d}}{m_s}\right)\right) \simeq -m_u \Lambda_{\rm QCD}^3 \cos\left(N_{\rm DW}\frac{a}{f}\right)$$

Axion Properties

• Mass:
$$m_a^2 = \frac{m_u \Lambda_{\rm QCD}^3}{(f/N_{\rm DW})^2}$$

• Couplings

- axion-gluon
$$\rightarrow$$
 neutron EDM
- axion-photon: $\Delta L = \frac{1}{4} g_{a\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu} = g_{a\gamma\gamma} \vec{E} \cdot \vec{B}$

$$g_{a\gamma\gamma} = \frac{e^2}{8\pi^2} \frac{N_{DW}}{f} \left(\frac{E}{N_{DW}} - \frac{2}{3} \frac{4 + m_u/m_d}{1 + m_u/m_d}\right)$$

EM anomaly axion-meson mixing

- axion-fermion:
$$\Delta L = \frac{c_f}{2f} (\partial_{\mu} a) \bar{f} \gamma^{\mu} \gamma_5 f = i g_{aff} a \bar{f} \gamma_5 f + \cdots \qquad g_{aff} = \frac{c_f m_f}{f}$$

• Axion decay to photons:
$$\Gamma_{a \to \gamma \gamma} = \frac{g_{a \gamma \gamma}^2 m_a^3}{64\pi} = 10^{-24} \text{s}^{-1} \times \left(\frac{m_a}{\text{eV}}\right)^5$$

- Models
 - KSVZ (hadronic) Axion
 - SM particles: PQ singlets

PQ scalar: spontaneous PQ breaking by $\langle \Phi \rangle \neq 0$

- Extra quarks with $y \Phi \bar{q}_L q_R$ where $\Phi = \frac{1}{\sqrt{2}} (f + s(x))e^{ia(x)/f}$

axion-photon coupling even if PQ quarks are EM neutral axon-SM fermion coupling at loop level

DFSZ Axion

- Two Higgs doublets charged under $U(1)_{PQ}$: H_u , H_d

Potential: $\Delta V = \lambda_H \Phi^2 H_u H_d$

PQ-invariant Yukawa terms: $H_u Q U^c + H_d Q D^c + H_d L E^c$

- Domain-wall number = 6
- Tree-level couplings between axion and SM fermions

- Theoretical Issues
 - Why physics determines *f*?

 $f = (PQ breaking scale) \leftarrow scale of new physics$

How to protect U(1)_{PQ} against quantum gravity effects?

Planck suppressed explicit PQ breaking operators

e.g.
$$\Delta V = \sum_{n \ge 1} \frac{\Phi^{4+n}}{M_{Pl}^n} \leftarrow harmful$$

c.f. blackholes and wormholes break global symmetries

Euclidean field configuration in gravity

gauge field outside blackholes and wormholes

PQ symmetry from high energy gauge symmetry?

QCD axion Cosmology

Axion Cosmology

Crucially depends on whether $U(1)_{PQ}$ is restored during inflation or not

Let $\theta \equiv \frac{a(x)}{f}$

•

No NG boson yet PQ symmetry unbroken during inflation

- After inflation, θ takes random values in different Hubble patches

 \rightarrow average initial misalignment angle: $\langle \theta_{ini}^2 \rangle = \frac{\pi^2}{3}$

- sizable density fluctuations when the axion gets massive

 \rightarrow gravitational bound object

```
size \sim (Hubble parameter) at QCD phase transition
```

lssues: Axion mini-clusters e.g. $R \sim 10$ pc for the QCD axion Collapsing to dense axion stars? Stable? ...

- Relics of PQ phase transition

Topological objects: strings and domain-walls

 \rightarrow Need $N_{\rm DW}$ = 1 to avoid the cosmological domain-wall problem

stable domain-walls for $N_{\rm DW} \ge 2$ overclose the universe

- Axion Cosmology
 - PQ symmetry breaking during inflation no restoration
 - Topological defects are diluted: $N_{\rm DW} \neq 1$ is allowed
 - After inflation, θ takes the same value in the whole observable universe
 - Quantum fluctuations during inflation: $\delta \theta = \frac{H_{inf}}{2\pi f}$
 - \rightarrow Isocurvature density perturbations after QCD phase tr.

photon density

effective PQ symmetry restoration if $\delta \theta > \pi$

Constrained by the observed CMB spectrum adiabatic, Gaussian

$$\left(\frac{\delta T}{T}\right)_{\rm iso} < 4 \times 10^{-6}$$

Î	V(θ)		δθ
A _{QCD}		θ0	θ _i

- Axion Evolution
 - Equation of motion

R: scale factor

$$\ddot{\theta} + 3H\dot{\theta} - \frac{\nabla^2}{R^2}\theta + \frac{\partial V(\theta,T)}{\partial \theta} = 0$$

H: Hubble parameter Harmonic approximation: $V(\theta, T) \approx \frac{1}{2}m_a^2(T)\theta^2$

Dilute instanton gas approximation $m_a(T) = m_a(0) \times \left(\frac{\Lambda_{QCD}}{T}\right)^{\frac{11}{6}N_c-2}$ at $T > \Lambda_{QCD}$

c.f. anharmonic effect if the initial position is close to the hilltop

• Fourier modes evolve independently

$$\ddot{\theta_k} + 3H\dot{\theta_k} + \omega^2\theta_k = 0$$
 with $\omega^2 = \frac{k^2}{R^2} + m_a^2(T)$

- $3H > \omega$: Modes outside the horizon

 \rightarrow Overdamped oscillation: $\theta_k \approx$ (constant) over $\delta t \sim 1/H$

- $3H < \omega$: Modes inside the horizon
 - \rightarrow Damped oscillation with frequency ω

oscillation amplitude decreases with expansion

 $H \ll \omega \rightarrow$ Fast oscillation and slow damping

- Axion Production
 - Axions from misalignment mechanism
 - Homogeneous field $\nabla \theta = 0$
 - Adiabatic evolution: Slow change of H, θ, m_a during one oscillation

- Axion Production
 - Relic density

$$\rho_a(T_0) = m_a(T_0)n_a(T_{\text{osc}}) \left(\frac{R(T_{\text{osc}})}{R(T_0)}\right)^3$$

Present universe: $T_0 = 2.4 \times 10^{-13} \text{GeV}$, $H_0 = 1.5 \times 10^{-42} \text{GeV}$

Axion cold dark matter density

$$\Omega_a h^2 \simeq 0.18 \theta_{\rm ini}^2 \left(\frac{f}{10^{12} {\rm GeV}}\right)^{1.19} \left(\frac{\Lambda_{\rm QCD}}{400 {\rm MeV}}\right)$$

PQ symmetry breaking after inflation

- $\langle \theta_{\rm ini}^2 \rangle = \frac{\pi^2}{3}$ (spatial average)
- anharmonic correction: $\Omega_a \rightarrow 2\Omega_a$

PQ broken during inflation

- θ_{ini} : free parameter

- Axion Production
 - Thermal axion
 - Produced from quark-gluon plasma

 $\Gamma \sim H$ Decoupling temperature: $T_{dec} \sim 10^{11} \text{GeV} \left(\frac{f}{10^{12} \text{GeV}}\right)^2$

 \rightarrow axions are thermalized if $T > T_{dec}$

- Hot axion dark matter

From Boltzmann eq: $\Omega_a h^2 \simeq 5 \times 10^{-9} \left(\frac{f}{10^{12} \text{GeV}}\right)^{-1}$

- Axion Production
 - Axions from topological defects

 $\theta: 0 \rightarrow 2\pi$

Case with PQ symmetry breaking after inflation

- PQ phase transition at $t_{PQ} \rightarrow$ Production of axionic strings

string
$$\Phi = \frac{f}{\sqrt{2}}e^{i\theta}$$

Core width
$$\sim \frac{1}{f}$$
 and string tension $\mu_{\text{string}} \sim f^2$

Long range interaction between strings mediated by massless axion field

- QCD phase transition at $t_{\text{QCD}} \rightarrow \text{Axion potential}$

 $V(\theta) \simeq -m_u \Lambda_{\rm QCD}^3 \cos(N_{\rm DW}\theta)$

 \rightarrow Degenerate $N_{\rm DW}$ vacua along axion direction

 $N_{\rm DW}$ domain-walls attached to string wall tension $\sigma_{\rm wall} \sim m_a f^2$

Axion Production

For $N_{\rm DW} \ge 2$, domain-walls are stable due to degenerate vacuum structure

 \rightarrow Overclosure of the universe

Need explicit $Z_{N_{DW}}$ breaking effect to lift the degenerate vacua

- Axions from topological defects for $N_{\rm DW} = 1$ no cosmological domain-wall problem
 - Disk-like domain-wall bounded by a string

 \rightarrow Unstable and collapse by wall tension while producing axions

Evolution of strings and walls: simple scaling solution

$$ho_{
m string} \sim H^2 \mu_{string} \sim rac{f^2}{t^2}$$
 for $t_{
m PQ} < t < t_{
m collapsing time}$

$$\rho_{\text{wall}} \sim H\sigma_{\text{wall}} \sim \frac{m_a(t)f}{t} \quad \text{for } t_{\text{QCD}} < t < t_{\text{coll}}$$

Axion number density from string-wall network dimensional analysis

 $\frac{d}{dt}(R^3n_a) \sim HR^3 \frac{\rho_{\text{string}} + \rho_{\text{wall}}}{(\text{typical energy of emitted axion})} \quad \text{until collapsing}$

- Axion Production
 - Axions from topological defects for $N_{\rm DW} = 1$
 - Most axions are produced near $t_{coll'}$ soon after the moment $m_a(t) \sim H(t)$
 - → Non-relativistic
 - Axion cold dark matter from the string-wall system

$$\Omega_a h^2 = c_a \left(\frac{f}{10^{12} \, {\rm GeV}}\right)^{1.19} \left(\frac{\Lambda_{\rm QCD}}{400 \, {\rm MeV}}\right)$$

with $c_a \simeq 3-6$ from numerical simulations

 \rightarrow 1.7*c*_a times larger than the axion density from misalignment

QCD axion Axion searches

Searches for axion/axion-like particle

Axion Interactions

Terrestrial

Experiments based on Primakoff effect γ a γ^* γ^*

• Light shining through walls: Strong B over long distances

Terrestrial

• Photon polarization

Linearly polarized light passing through magnetic field

- \rightarrow Primakoff effect to reduce the parallel component
- Fifth force

Spin-dependent forces mediated by axion: axion-neutron coupling

- Celestrial
 - Direct searches astrophysical source of axions

Microwave resonant cavity experiments for $m_a = 10^{-6}$ - 10^{-4} eV

- Conversion of axions to microwave photons

Need to tune cavity e.g. $m_a = 10^{-5} \text{eV} \rightarrow \text{frequency} = \frac{m_a}{\hbar} = 2.4 \text{GHz}$

axions produced in the solar core Celestrial X-ray X-Ray detector **Direct searches** • Axion Axion Photon 500 s> Flight time - Axion helioscope for $m_a = 0.1$ -1eV Earth Sun а Indirect Searches: Stellar energy loss limits ٠ - White dwarf, red giant: Bremsstrahlung $e + Ze \rightarrow Ze + e + a$ ZeZePrimakoff $\gamma + Ze \rightarrow Ze + a$ (additional energy loss rate) $\propto g_{aee}^2 T^4$, a - Neutron star, supernovae: Nucleon Bremsstrahlung $N + N \rightarrow N + N + a$ ıπ

Astrophysical bounds: $f > 10^9 \text{GeV}$

Ν

Ν

Cosmological

- Direct: axion cold dark matter
- Indirect: hot dark matter, dark radiation, isocurvature density perturbation, gravitational waves, CMB spectral distortion, ...

Axion Summary

2-4. BSM Models

- Two BSM scenarios
 - Axionic Extension
 - Light scalar particles feebly coupled to the SM
 - Light scalar from continuous shift symmetry

Natural and interesting candidate for 'very weakly coupled light particle' beyond the SM!

Supersymmetric Extension

- Heavy particles above the weak scale with sizable coupling to the SM
- Supersymmetry to remove the UV sensitivity of scalar fields