Machine learning for particle physicists

I1l. How to train better networks

Anja Butter

26th Vietnam School of Physics

Recap - Neural networks basics

@nput Layer @ Hidden Layer @ Output Layer

DNN:
Backpropagation:

Mini-batch gradient descent:
Overfitting:

y=0,(W,-0,-1(Wp_1-... 01(W1X)))
oL 0o, OJlin, Olin;

o, Olin, don_y~ Ow;

weight update based on batch of data

Vo L=

network learns noise

— control: validation + test dataset

2/39

Plan for today

How to train better networks

Practical tips to avoid frustration :)

@ Data preprocessing

® Network initialization

® Optimizing the training procedure
O Regularization

©® Hyperparameter tuning

3/39

Data Preprocessing

Why preporcessing?
® input features with different scales
eg. jet = (charge, Nparticless PT 5 M, n, ¢)

® large value with small spread
eg. pp = Z — Ill;my € [80 GeV — 100 GeV]

weights usually initialized to be sensitive in range [-1,+1]

classification output in range [0,1]
e training more efficient/stable if features are also in range [-1, +1]

ONE DOES NOT SIMPLY
\

-
“r

b |

rﬁvnoctsg DATA

4/39

Rescaling

Example: pp — Z — ptu~
Rule of thumb: rescale to y =0,0 =1

035
0012

030
0.010 5

Px—Px 025

0.008 a(px)

020
0.006

015
0.004 010
0.002 0.05
0,000+ 0,00+

-100 -75 -5 ~-25 0 25 50 75 100

Rescaling

Example: pp — Z — ptu~
Rule of thumb: rescale to y =0,0 =1

035
0012
030
0.010 5
Px—Px 025
0.008 a(px)
020
0.006
015
0.004 010
0.002 0.05
0,000+ 0.00
-100 -75 -5 ~-25 0 25 50 75 100
Pru
0.0200
00175 10
0.0150 E—E
—_— 08
00125 o(E)
0.0100 e 05
0.0075 04
0.0050
02
0.0025

[1

Eurescaed

50 100 150 250 300 350 400

200
E[Gev]

6/39

Example: pp — Z — ptu~

Rescaling

Rule of thumb: rescale to y =0,0 =1

00200

00175

00150

00125

00100

00075

0.0050

00025

50 100 150 250 300 350 400

200
E[Gev]

Px—Px
o(px)

E'—E'

o(E")
—_—

E’ = log(E — 20)

[
Eurescaed

7/39

Rescaling

Example: pp — Z — ptu~
Exception: Correlated observables

16
0.200
14
0175 5
Pi,pn—Pip 12
o0 “olpi L)
i 10
0125 o
—_—
0.100 o8
0.075 06
0.050 04
0.025 02
0.000 00
60 70 80 00 10 120

90
Mz [Gev)

Rescaling

Example: pp — Z — ptu~
Exception: Correlated observables

16
0.200
14
0175 5
Pi,pn—Pip 12
o0 “olpi L)
i 10
0125 o
—_—
0.100 o8
0.075 06
0.050 04
0.025 02
0.000 00
60 70 80 00 10 120 ° H

90
Mz [Gev)

pel tGe)

200 300
Elcev)

= Use same scale

9/39

PCA

Principal component analysis

® directions maximizing variance
® eigenvector of covariance matrix
* cov(X)=X"X

+ facilitates training

+ useful for interpretation

+ can reduce data dimension

10/39

® Network initialization

11/39

Network initialization
We know how to update weights. But how do we start?

o w =17

12/39

Network initialization
We know how to update weights. But how do we start?

o w =17

symmetric initialization = symmetric updates = identical weights #

13/39

Network initialization
We know how to update weights. But how do we start?

Oow =17 ¢
(2] WiNN(MZO,UZI)?

Check for single neuron y = w;x; with w;, x; independent:

<y >=) <wix >
i
=) <w > >+ <2< W >+ < W >< K7 >
i
=D <W>< > < w >=<x >=0
i

= Nincoming < W,'2 >< X,'2 > diverges!

14/39

Network initialization
We know how to update weights. But how do we start?

Oow =17 ¢
QWiNN(MZO,O'Zl)? s

ONE DOES NOT SIMPLY

o
“

a
INITIALIZE IIAI_IIIIIM[Y

to preserve variance through network

=< w? >=
Nincoming

15/39

Network initialization
We know how to update weights. But how do we start?
o w =17 ¢
@w ~Np=0,0=1)7 ¢
©® Xavier/Glorot initialization w; ~ A (u =0,0 =/2/(nin + nout)>
® caveat 1: Same argument for backpropagation — average

(nin + nout)/2
® caveat 2: only for = linear activation function eg. tanh

16/39

Network initialization
We know how to update weights. But how do we start?

Oow =17 ¢
QWiNN(MZO,UZI)? s

©® Xavier/Glorot initialization w; ~ A (u =0,0 =/2/(nin + nout)>

© RelLU — 50% of outputs = 0 — additional factor 2

= He initialization 0 = \/2/n;,

17/39

Network initialization
We know how to update weights. But how do we start?

Oow =17 ¢
QWiNN(MZO,UZI)? s

©® Xavier/Glorot initialization w; ~ A (u =0,0 =/2/(nin + nout)>

© RelLU — 50% of outputs = 0 — additional factor 2

= He initialization 0 = \/2/n;,

©® Glorot & He initialization also available for uniform distributions

18/39

Pretraining

For some tasks we can use pretrained networks
— trained on large dataset to extract image features

Google's InceptionResNetV2 to identify anomalies in QCD jet images
Best image class to identify QCD jet images:

19/39

Pretraining

For some tasks we can use pretrained networks
— trained on large dataset to extract image features

Google's InceptionResNetV2 to identify anomalies in QCD jet images
Best image class to identify QCD jet images:

Lisa Benato

transfer trained]

0 images

% differencein AUC from training on full sample

5 10 15 20
% training sample used

Ice cream classification :)

20/39

® Optimizing the training procedure

21/39

Optimizing the training procedure

Reminder

Convergence depends on learning rate

Too low Just right

Too high
1(6)

N N

o 0 o
Asmall learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the causes drastic updates
be.fqre reach!ng the minimum point which lead to divergent
minimum point behaviors

https:/ /www.jeremyjordan.me/nn-learning-rate/

— Experiment with different orders of magnitude eg. 1071 ...107°

22/39

Learn rate decay

Reduce learning rate over time to improve convergence

: lo
Time-Based Decay I(t) = 1o ket
Step Decay I(t) = lo« XMEE/T) with 0 < A < 1
Exponential Decay I(t) = lpx e /T

0.5

step

‘ —— time based
—— exponential

0.44

0.34

0.24

0 50 100 150 200

23/39

Momentum

Problem: One dimension much steeper than the other

gradient descent W, — Wiy =W, —aVpw,L
GD 4+ momentum W, — Wi = W, — avg,
Vaw = BVdw + (1 — B)Vw,L

Intuition: ball picks up momentum

Jjermwatt.github.io/machine_learning_refined
enforces dimensions where gradient points in same direction
+ reduces oscillation

24 /39

Adagra/RMSprop

Adapt updates to individual parameters

1
W; —- Wi q,1=W;,—a——Vn.L
t t+1 t m w,

— Different learning rate for each parameter

t
Adagrad: Gie =Y _ dw/y
t’=0

sum over vector of all past gradients
— monotonically decreasing learning rate
2
RMSpI’OpZ G,',"t = ,BG,',"tfl —|— (1 — ﬁ)dW,-’t

— 8 =0.9 — decaying average

25 /39

Adam

Adaptive moment estimation
Standard go to option, stable & fast
Combines first moment (momentum) and second moment (RMSprop)

1
Wt — Wt+1 Wt - a\/G——i—e dw
1
Vaw,t = —— (B1Vaw,t—1 + (1 — B1)dw; ¢)
1-5
1
Giit = 1_—52 (52Gii,t—1 +(1— 52)dWi2,t)

Others worth exploring!
Might fit your problem better?

® Nesterov accelerated gradient
® Adadelta
® AMSGrad

26 /39

O Regularization

27 /39

Reminder: Overtraining

Overtraining: networks picks up irrelevant features

Control with validation/test data
We refer to this regularization technique as early stopping
not always applicable — consider alternatives

28/39

Regularization

Modify loss

Modify network

® /i regularization

® Dropout L
P ® |, regularization

® Batch normalization

® gradient penalty

29/39

Modifying the loss

The network is constrained by punishing large weight values
L=L(y.y)+ QW)
h QW) = WL =) Wl
ij
b QW) = Wi =Y w;
ij

gradient penalty QW) ~ (|VX7I3

30/39

Dropout

Randomly switching off nodes during training

then average for evaluation

Intuition: Train many different models,

78
@

1.«“ AN

(b) After applying dropout.

(a) Standard Neural Net

2014, N. Srivastava et. al

31/39

Batch normalization

Idea: fix mean and variance of layer output

X—X
X — Xporm = —F/———
o(x)+e

y=9x'"+p8

trainable parameters ~, 8

During training: normalization per batch
For inference: normalization from full dataset

Why it works is subject of current research!
Smoothness of optimization landscape? Length-Direction decoupling?

32/39

o Hyperparameter tuning

33/39

Hyperparameter tuning

How can we find the best settings for the training?
Problem: We can not compute a gradient!

34/39

Hyperparameter tuning

How can we find the best settings for the training?
Problem: We can not compute a gradient!

@ by hand — underrated, helps to build experience
® Grid search

® Random (blind)

@ Bayesian optimization (educated guess, advanced)

35/39

Advantage of random vs grid search

Grid Layout Random Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter
Advantages: easy to code, run parallel

Disadvantage: no use of information from previous iterations, curse of
dimensionality

36/39

All the things you can do to your ML setup

@ Data preprocessing
® Rescaling, PCA

® Network initialization
® Glorot/HE, Normal/uniform

® Optimizing the training procedure

® Learning rate scheduling, momentum, Adagrad, Adam

O Regularization

® Via early stopping, additional loss, dropout, or Batchnorm

©® Hyperparameter tuning

® get a feeling for the network, random search, Bayesian optimization

37/39

Ready to try it out?

— colab

— gitHub

— dhrou

— HEPMLtutorials

— HEPML_HandsOn_NN.ipynb

Big thank you to David Rousseau for sharing this tutorial!

38/39

Corrections

D = Model(inputs=[inputs], outputs=[Dx])
class_weight = {

0: class_weights[0],

1: class_weights[1],

}

D.fit(

X_train,

y-train.values,
epochs=10,

verbose=0,
class_weight=class_weight

)

39/39

