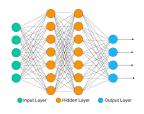
Machine learning for particle physicists

III. How to train better networks

Anja Butter

26th Vietnam School of Physics

Recap - Neural networks basics



DNN:

Backpropagation:

Mini-batch gradient descent:

Overfitting:

 $\tilde{\boldsymbol{y}} = \sigma_n(\boldsymbol{W}_n \cdot \sigma_{n-1}(\boldsymbol{W}_{n-1} \cdot \ldots \cdot \sigma_1(\boldsymbol{W}_1 \boldsymbol{X})))$

$$\nabla_{\boldsymbol{w}_i}\mathcal{L} = \frac{\partial \mathcal{L}}{\partial \sigma_n} \frac{\partial \sigma_n}{\partial lin_n} \frac{\partial lin_n}{\partial \sigma_{n-1}} \dots \frac{\partial lin_i}{\partial w_i}$$

weight update based on batch of data

network learns noise

 \rightarrow control: validation + test dataset

Plan for today

How to train better networks

Practical tips to avoid frustration:)

- Data preprocessing
- Network initialization
- 3 Optimizing the training procedure
- 4 Regularization
- **5** Hyperparameter tuning

Data Preprocessing

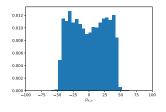
Why preporcessing?

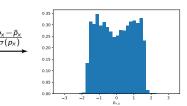
- input features with different scales eg. jet = (charge, $n_{particles}, p_T, M, \eta, \phi$)
- large value with small spread eg. $pp \rightarrow Z \rightarrow II$, $m_{II} \in [80 \text{ GeV} - 100 \text{ GeV}]$
- weights usually initialized to be sensitive in range [-1,+1]
- classification output in range [0,1]
- ullet training more efficient/stable if features are also in range [-1, +1]



Example: $pp \rightarrow Z \rightarrow \mu^{+}\mu^{-}$

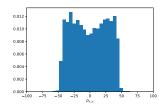
Rule of thumb: rescale to $\mu=0, \sigma=1$

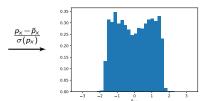


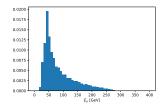


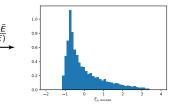
Example: $pp \rightarrow Z \rightarrow \mu^+\mu^-$

Rule of thumb: rescale to $\mu=0, \sigma=1$



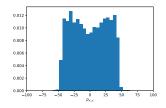


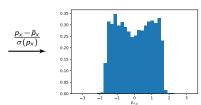


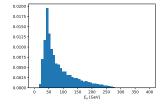


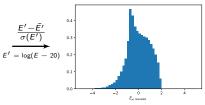
Example: $pp \rightarrow Z \rightarrow \mu^+\mu^-$

Rule of thumb: rescale to $\mu=0, \sigma=1$



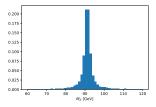


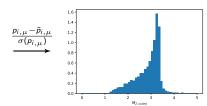




Example: $pp \rightarrow Z \rightarrow \mu^+\mu^-$

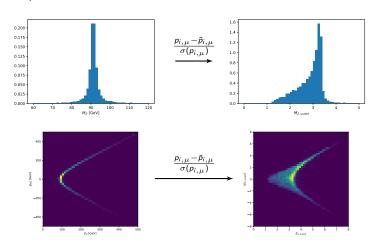
Exception: Correlated observables





Example: $pp \rightarrow Z \rightarrow \mu^{+}\mu^{-}$

Exception: Correlated observables

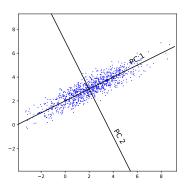


 \Rightarrow Use same scale for $p_{i,u}$

PCA

Principal component analysis

- directions maximizing variance
- eigenvector of covariance matrix
- $cov(\boldsymbol{X}) = \boldsymbol{X}^T \boldsymbol{X}$
- + facilitates training
- + useful for interpretation
- + can reduce data dimension



1
$$w_i = 1$$
?

We know how to update weights. But how do we start?

$$w_i = 1?$$

 $\mathsf{symmetric}\ \mathsf{initialization} \Rightarrow \mathsf{symmetric}\ \mathsf{updates} \Rightarrow \mathsf{identical}\ \mathsf{weights}\ \mathit{f}$

We know how to update weights. But how do we start?

- 1 $w_i = 1$?
- **2** $w_i \sim \mathcal{N}(\mu = 0, \sigma = 1)$?

Check for single neuron $y = w_i x_i$ with w_i, x_i independent:

1
$$w_i = 1$$
?

2
$$w_i \sim \mathcal{N}(\mu = 0, \sigma = 1)$$
?

$$\rightarrow < w_i^2 > = \frac{1}{n_{incoming}}$$
 to preserve variance through network

- 1 $w_i = 1$?
- **2** $w_i \sim \mathcal{N}(\mu = 0, \sigma = 1)$?
- **3** Xavier/Glorot initialization $w_i \sim \mathcal{N}\left(\mu = 0, \sigma = \sqrt{2/(n_{in} + n_{out})}\right)$
 - caveat 1: Same argument for backpropagation \rightarrow average $(n_{in} + n_{out})/2$
 - ullet caveat 2: only for pprox linear activation function eg. tanh

- 1 $w_i = 1$?
- **2** $w_i \sim \mathcal{N}(\mu = 0, \sigma = 1)$?
- **3** Xavier/Glorot initialization $w_i \sim \mathcal{N}\left(\mu = 0, \sigma = \sqrt{2/(n_{in} + n_{out})}\right)$
- **Q** ReLU → 50% of outputs = 0 → additional factor 2 ⇒ He initialization $\sigma = \sqrt{2/n_{in}}$

- 1 $w_i = 1$?
- **2** $w_i \sim \mathcal{N}(\mu = 0, \sigma = 1)$?
- **3** Xavier/Glorot initialization $w_i \sim \mathcal{N}\left(\mu = 0, \sigma = \sqrt{2/(n_{in} + n_{out})}\right)$
- **Q** ReLU → 50% of outputs = 0 → additional factor 2 ⇒ He initialization $\sigma = \sqrt{2/n_{in}}$
- 6 Glorot & He initialization also available for uniform distributions

Pretraining

For some tasks we can use pretrained networks

 \rightarrow trained on large dataset to extract image features

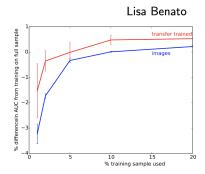
Google's InceptionResNetV2 to identify anomalies in QCD jet images Best image class to identify QCD jet images:

Pretraining

For some tasks we can use pretrained networks

 \rightarrow trained on large dataset to extract image features

Google's InceptionResNetV2 to identify anomalies in QCD jet images Best image class to identify QCD jet images:

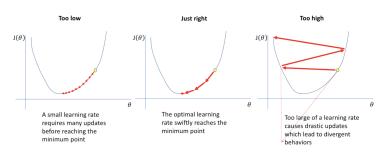


Ice cream classification:)

3 Optimizing the training procedure

Optimizing the training procedure

Convergence depends on learning rate



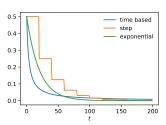
https://www.jeremyjordan.me/nn-learning-rate/

ightarrow Experiment with different orders of magnitude eg. $10^{-1}\dots 10^{-6}$

Learn rate decay

Reduce learning rate over time to improve convergence

Time-Based Decay
$$I(t) = \frac{I_0}{1+k*t}$$
 Step Decay
$$I(t) = I_0 * \lambda^{int(t/\tau)} \qquad \text{with } 0 < \lambda < 1$$
 Exponential Decay
$$I(t) = I_0 * e^{-t/\tau}$$

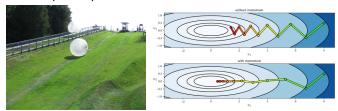


Momentum

Problem: One dimension much steeper than the other

gradient descent
$$m{W}_t
ightarrow m{W}_{t+1} = m{W}_t - lpha
abla_{m{W}_t} \mathcal{L}$$
 GD + momentum $m{W}_t
ightarrow m{W}_{t+1} = m{W}_t - lpha
abla_{dw}$ $v_{dw} = eta v_{dw} + (1 - eta)
abla_{m{W}_t} \mathcal{L}$

Intuition: ball picks up momentum



jermwatt.github.io/machine_learning_refined

enforces dimensions where gradient points in same direction
+ reduces oscillation

Adagra/RMSprop

Adapt updates to individual parameters

$$\boldsymbol{W}_t \rightarrow \boldsymbol{W}_{t+1} = \boldsymbol{W}_t - \alpha \frac{1}{\sqrt{G+\epsilon}} \nabla_{\boldsymbol{W}_t} \mathcal{L}$$

→ Different learning rate for each parameter

Adagrad:
$$G_{ii,t} = \sum_{t'=0}^{t} \mathrm{d}w_{i,t'}^2$$
 sum over vector of all past gradients
$$\to \text{monotonically decreasing learning rate}$$
 RMSprop:
$$G_{ii,t} = \beta G_{ii,t-1} + (1-\beta) \mathrm{d}w_{i,t}^2$$

$$\to \beta = 0.9 \to \text{ decaying average}$$

Adam

Adaptive moment estimation

Standard go to option, stable & fast Combines first moment (momentum) and second moment (RMSprop)

$$m{W}_{t}
ightarrow m{W}_{t+1} = m{W}_{t} - lpha rac{1}{\sqrt{G + \epsilon}} v_{dw}$$
 $v_{dw,t} = rac{1}{1 - eta_{1}} \left(eta_{1} v_{dw,t-1} + (1 - eta_{1}) dw_{i,t}
ight)$ $G_{ii,t} = rac{1}{1 - eta_{2}} \left(eta_{2} G_{ii,t-1} + (1 - eta_{2}) dw_{i,t}^{2}
ight)$

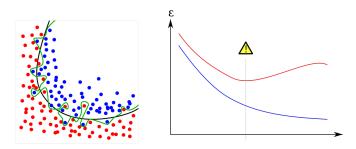
Others worth exploring! Might fit your problem better?

- Nesterov accelerated gradient
- Adadelta
- AMSGrad

4 Regularization

Reminder: Overtraining

Overtraining: networks picks up irrelevant features



Control with validation/test data We refer to this regularization technique as early stopping not always applicable \rightarrow consider alternatives

Regularization

Modify network

- Dropout
- Batch normalization

Modify loss

- *l*₁ regularization
- *l*₂ regularization
- gradient penalty

Modifying the loss

The network is constrained by punishing large weight values

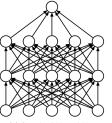
$$\mathcal{L} = \mathcal{L}(\mathbf{y}, \tilde{\mathbf{y}}) + \alpha \Omega(\mathbf{W})$$

$$egin{align} I_1 & \Omega(oldsymbol{W}) = ||oldsymbol{W}||_1 = \sum_{ij} |W_{ij}| \ & I_2 & \Omega(oldsymbol{W}) = ||oldsymbol{W}||_2^2 = \sum_{ij} W_{ij}^2 \ & \Omega(oldsymbol{W}) \sim ||
abla_{oldsymbol{x}} ilde{oldsymbol{y}}||_2^2 & \Omega(oldsymbol{W}) \sim ||
abla_{oldsymbol{y}} ilde{oldsymbol{y}}||_2^2 & \Omega(oldsymbol{y}) \sim ||
abla_{oldsymbol{y}} ilde{oldsymbol{y}}||_2^2 & \Omega(oldsymbol{y}) = 0$$

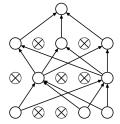
Dropout

Randomly switching off nodes during training

Intuition: Train many different models, then average for evaluation



(a) Standard Neural Net



(b) After applying dropout.

Batch normalization

Idea: fix mean and variance of layer output

$$m{x}
ightarrow m{x}_{norm} = rac{m{x} - ar{m{x}}}{\sqrt{\sigma(m{x}) + \epsilon}}$$
 $m{y} = \gamma m{x}' + eta$

trainable parameters γ, β

During training: normalization per batch For inference: normalization from full dataset

Why it works is subject of current research! Smoothness of optimization landscape? Length-Direction decoupling?

6 Hyperparameter tuning

Hyperparameter tuning

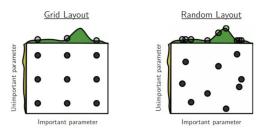
How can we find the best settings for the training? Problem: We can not compute a gradient!

Hyperparameter tuning

How can we find the best settings for the training? Problem: We can not compute a gradient!

- \bullet by hand \rightarrow underrated, helps to build experience
- @ Grid search
- 3 Random (blind)
- Bayesian optimization (educated guess, advanced)

Advantage of random vs grid search



Advantages: easy to code, run parallel
Disadvantage: no use of information from previous iterations, curse of
dimensionality

All the things you can do to your ML setup

- Data preprocessing
 - Rescaling, PCA
- Network initialization
 - Glorot/HE, Normal/uniform
- 3 Optimizing the training procedure
 - Learning rate scheduling, momentum, Adagrad, Adam
- 4 Regularization
 - Via early stopping, additional loss, dropout, or Batchnorm
- 6 Hyperparameter tuning
 - get a feeling for the network, random search, Bayesian optimization

Ready to try it out?

- \rightarrow colab
- $\rightarrow \mathsf{gitHub}$
- \rightarrow dhrou
- \rightarrow HEPMLtutorials
- \rightarrow HEPML_HandsOn_NN.ipynb

Big thank you to David Rousseau for sharing this tutorial!

Corrections

```
D = Model(inputs=[inputs], outputs=[Dx])
class_weight = {
0: class_weights[0],
1: class_weights[1],
}
D.fit(
X_train,
y_train.values,
epochs=10,
verbose=0,
class_weight=class_weight
```