Detectors and Reconstruction

Nhan Tran, Fermilab
December 5, 2020

VSOP26

TABLE OF CONTENTS

Part 1: Building blocks and detectors

a. Charged particle tracking, vertexing
b. Precision Timing
c. Calorimeter hits
d. Particle ID, e.g. LHCb RICH detector

Part 2: Particle reconstruction
a. Muons
b. Photons/Electrons \longleftarrow YOU ARE HERE
c. Taus, Hadrons
e. Particle Flow

Part 3: Composite objects and beyond
a. Jets, MET
b. Jet substructure
c. Pileup Mitigation
c.ii. special topic: Underlying event in heavy ions

I'm drawing a lot from different sources, but great references are lectures from previous HCPSS (Phil Harris and Rick Cavanaugh) and also from lectures by Alex Tapper
d. Displaced/Exotic objects

Electrons

The problem with electrons...
They interact a lot more! Primarily through bremsstrahlung Energy loss from bremsstrahlung:
(energy loss is proportional to energy)

$$
-\frac{d E}{d x}=\frac{E}{X_{0}}
$$

Electrons

The problem with electrons...
They interact a lot more! Primarily through bremsstrahlung Energy loss from bremsstrahlung:
(energy loss is proportional to energy)

$$
-\frac{d E}{d x}=\frac{E}{X_{0}}
$$

Mind your material!
Important to consider the material
budget in the tracker detector design

Complications with electrons

The tricky part of electron tracking is accounting for radiation loss from bremsstrahlung along the track trajectory

Electron undergoes brem $\sim 70 \%$ of the time Photon converts to e+e- pair 50\% of the time

Recover brem particles along the ϕ trajectory of the track because of the magnetic field

Tracking has to account for energy loss

Gaussian Sum Filter tracking = extension of
Kalman Filter algorithm with a sum of Gaussians weighted by radiation probability

Complications with electrons

Electron performance

$|\Delta \eta|$ $|\Delta \phi|$ H / E_{SC}
$\sigma_{\eta \eta}$
$\left|1 / E_{S C}-1 / p\right|$
Iso $_{\text {PF }}(\Delta \mathrm{R}=0.3) / p_{\mathrm{T}}$
$\left|d_{0}\right|$
$\left|d_{z}\right|$
Missing hits
Conversion-fit probability

What variables go into the selection?

Рнотоns

Identifying prompt and isolated photons important
Particularly for analyses like H(yy)
Primary variables for photon identification are shower-shape and isolation (more on this later) variables

No matched track to separate from electrons
signal Isolated FSR photons from Z $\mu \mu$
background Photons from jets

[CHARGED] HADRONS

Match tracks to hadronic clusters to form charged hadrons Again, mind your materials!

The tracker material acts as a hadronic preshower (for both charged and neutral hadrons)

Complications with hadrons

Nuclear interactions often result in kinks in the track or a production of secondary particles Can be recovered with displaced track reconstruction

Map of nuclear interactions

To avoid double counting, nuclear interactions need to be identified and combined into primary particles (part of particle flow, see later)

SUMMARY: CHARGED PARTICLE TRACKING

Muons

Pions

Electrons

Side-by-side comparison of muon, pion, electron tracking efficiency - this illustrates the challenge of tracker material for charged hadrons and electrons

Taus

Massive and relatively long lived $\mathrm{m}(\mathrm{T})=1.7 \mathrm{GeV}$
$\mathrm{CT}=87 \mu \mathrm{~m}$

40% of the time 60% of the time

Leptonic tau reconstruction relies on
 missing energy from the neutrinos

HADRONIC TAUS

Three Hadrons

TAU PERFORMANCE

A NOTE ON IsOLATION

So far isolation has been mentioned in many contexts

Isolation very important to identify prompt muon, electron, photon, tau signals

For example:
Prompt:
Hadronic Tau vs. jet
Photon vs. jet
Muon vs. b jet

Isolation: the extra amount of energy around the object of interest

Often relative isolation is the quantity of interest Will come back to this later with pileup discussion

WHAT IS PILEUP?

Multiple pp collisions in the same beam crossing
 (mostly minimum bias events)

WHAT IS PILEUP?

PARTICLE FLOW CONCEPT

Also was sometimes referred to as "global event description"

Combine the sub-detector information in a complementary way in a single algorithm

Outputs a list of particles: muons, electrons, photons, neutral hadrons, charged hadrons

Avoids double-counting of the energy to create a selfconsistent view of the event

Breaking down the event at the particle level can aid in things like jet substructure and pileup mitigation (more later)

SETTING THE STAGE, JET COMPOSITION

SETTING THE STAGE, JET COMPOSITION

But...FLUCTUATIONS

The fraction of the jet energy that is charged/neutral hadron and photon fluctuates quite a bit
Flucutations on the order of $20-30 \%$ of the jet energy
Therefore, you still have to measure all the energy in the event!

How to reconstruct individual particles?

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

First Associate Hits within Each Detector

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

First Associate Hits within Each Detector

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

First Associate Hits within Each Detector

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

First Associate Hits within Each Detector

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

First Associate Hits within Each Detector

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

First Associate Hits within Each Detector

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

First Associate Hits within Each Detector

ECAL

Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

First Associate Hits within Each Detector

ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

First Associate Hits within Each Detector

ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

First Associate Hits within Each Detector

ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

First Associate Hits within Each Detector

HCAL

Clusters

ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

First Associate Hits within Each Detector

HCAL
 Clusters

ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

HCAL
Clusters

ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

Then Link Across Detectors

HCAL
 Clusters

ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

Then Link Across Detectors

HCAL
 Clusters

ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

Then Link Across Detectors

HCAL
 Clusters

ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

Then Link Across Detectors

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

Then Link Across Detectors

HCAL
 Clusters
 ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

Then Link Across Detectors

HCAL
 Clusters
 ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

Finally Apply Particle ID \& Separation

HCAL
 Clusters

ECAL Clusters

Tracks

How to reconstruct individual particles?

Finally Apply Particle ID \& Separation

HCAL
 Clusters

ECAL Clusters

Tracks

How to reconstruct individual particles?

Finally Apply Particle ID \& Separation

HCAL
 Clusters

ECAL Clusters

Tracks

How to reconstruct individual particles?

Finally Apply Particle ID \& Separation

HCAL
 Clusters

ECAL Clusters

Tracks

How to reconstruct individual particles?

Finally Apply Particle ID \& Separation

HCAL
Clusters

ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

How to reconstruct individual particles?

Finally Apply Particle ID \& Separation

HCAL
 Clusters

ECAL Clusters

Tracks

How to reconstruct individual particles?

Finally Apply Particle ID \& Separation

HCAL
 Clusters

ECAL Clusters

Tracks

Courtesy: Rick Cavanaugh

Very basic view of the Particle Flow Algorithm

Courtesy: Rick Cavanaugh

Very basic view of the Particle Flow Algorithm

Clean the event during reconstruction

Courtesy: Rick Cavanaugh

Very basic view of the Particle Flow Algorithm

Clean the event during reconstruction

$$
\text { Find and "remove" muons (} \sigma_{\text {track }} \text {) }
$$

Courtesy: Rick Cavanaugh

Very basic view of the Particle Flow Algorithm

Clean the event during reconstruction

```
Find and "remove" muons ( \(\sigma_{\text {track }}\) )
Find and "remove" electrons ( \(\min \left[\sigma_{\text {track, }} \sigma_{\text {ECAL }}\right]\) )
```

Courtesy: Rick Cavanaugh

Very basic view of the Particle Flow Algorithm
Clean the event during reconstruction
Find and "remove" muons ($\sigma_{\text {track }}$)
Find and "remove" electrons ($\left.\min \left[\sigma_{\text {track, }} \sigma_{\mathrm{ECAL}}\right]\right)$
Find and "remove" converted photons ($\left.\min \left[\sigma_{\text {track, }} \sigma_{\mathrm{ECAL}}\right]\right)$

Courtesy: Rick Cavanaugh

Very basic view of the Particle Flow Algorithm
Clean the event during reconstruction
Find and "remove" muons ($\sigma_{\text {track }}$)
Find and "remove" electrons ($\min \left[\sigma_{\text {track, }} \sigma_{\text {ECAL }}\right]$)
Find and "remove" converted photons ($\left.\min \left[\sigma_{\text {track, }} \sigma_{\text {ECAL }}\right]\right)$
Find and "remove" charged hadrons ($\sigma_{\text {track }}$)

Courtesy: Rick Cavanaugh

Very basic view of the Particle Flow Algorithm
Clean the event during reconstruction
Find and "remove" muons ($\sigma_{\text {track }}$)
Find and "remove" electrons ($\min \left[\sigma_{\text {track, }} \sigma_{\text {ECAL }}\right]$)
Find and "remove" converted photons ($\left.\min \left[\sigma_{\text {track, }} \sigma_{\text {ECAL }}\right]\right)$
Find and "remove" charged hadrons ($\sigma_{\text {track }}$)
Find and "remove" V0's ($\sigma_{\text {track }}$)

Courtesy: Rick Cavanaugh

Very basic view of the Particle Flow Algorithm
Clean the event during reconstruction

Courtesy: Rick Cavanaugh

Very basic view of the Particle Flow Algorithm
Clean the event during reconstruction
Find and "remove" muons (σ track)
Find and "remove" electrons ($\min \left[\sigma_{\text {track, }} \sigma_{\text {ECAL }}\right]$)
Find and "remove" converted photons ($\left.\min \left[\sigma_{\text {track, }} \sigma_{\text {ECAL }}\right]\right)$
Find and "remove" charged hadrons ($\sigma_{\text {track }}$)
Find and "remove" VO's ($\sigma_{\text {track }}$)
Find and "remove" photons (σ ECAL)
Left with neutral hadrons (10\%) (σ HCAL + fake)

Very basic view of the Particle Flow Algorithm
Clean the event during reconstruction
Find and "remove" muons ($\sigma_{\text {track }}$)
Find and "remove" electrons ($\min \left[\sigma_{\text {track, }} \sigma_{\text {ECAL }}\right]$)
Find and "remove" converted photons ($\left.\min \left[\sigma_{\text {track, }} \sigma_{\text {ECAL }}\right]\right)$
Find and "remove" charged hadrons ($\sigma_{\text {track }}$)
Find and "remove" V0's ($\sigma_{\text {track }}$)
Find and "remove" photons (σ ECAL)
Left with neutral hadrons (10\%) (σ HCAL + fake)
Use above list of Reconstructed Particles to describe theentire event!

SETTING THE STAGE, JET COMPOSITION

PF CALIBRATION

In-situ calibration of particle flow candidates:
Electrons/photons/muons use the Z and π^{0}

Calibration of the charged/neutral pions use isolated tracking to fit for the energy of charged hadrons calorimeter energy
$E=a+b(p, \eta)$ Eecal $+c(p, \eta)$ Ehcal

3. COMPOSITE OBJECTS AND BEYOND

JETS

Now that we have multiple particles,
let's talk about jets a little more formally now

$$
\begin{aligned}
\text { Jet }= & \text { a spray of stuff (typically from } q / g \text {) } \\
& \text { reconstructed as a single object }
\end{aligned}
$$

JET CLUSTERING

How to group particles/deposits/etc. together to make a jet?
Jet clustering algorithms have a looong history, but to keep it short - for precise predictions, it is important to have a formal connection between theory and experiment

Often referred to as "IRC safe"

The result of the jet algorithm stable against infinitely soft and collinear emissions Infrared, IR: As E $\rightarrow 0$
Collinear, C: As $\Delta \mathrm{R} \rightarrow 0$

SEQUENTIAL RECOMBINATION ALGORITHMS

Hierarchical jet clustering algorithms
Compute a "distance" between each particle
Recombine particles pairwise based on smallest "distance" until some condition is met

Distance measure: $d_{i j}=\min \left(k_{t i}^{2 p}, k_{t j}^{2 p}\right) \frac{\Delta R_{i j}}{\underbrace{R^{2}}_{\text {Jet distance parameter, } \mathrm{R}}} \quad$ Condition: $d_{i j}<d_{i B}=k_{t i}^{2 p}$

When:
$\mathrm{p}=1, \mathrm{kT}$ algorithm - start with softest particles
$\mathrm{p}=0, \mathrm{CA}$ algorithm - start with closest particles
$\mathrm{p}=-1$, anti-kT algorithm - start with hardest particles

Cartoon event display - PF particles

Circle $=$ position of particle within the detector Area ~ energy of particle

Example: Cambridge Aachen Jet Clustering

Find the closest pair

If they are closer than d_{ij}, combine their 4 vectors

Repeat on the new closest pair

\square

\bigcirc

Stop when the closest pair is separated by $\Delta R>R$

The algorithm found 3 jets, each with 4-vector equal to the sum of its components

If we had used a different distance parameter, the answer would have been much different (6 jets instead of 3)

JET ALGORITHMS

Which R?...Which JET?

In the end, you pick the R that is appropriate for your analysis.
Discuss this more when talking about jet substructure

Most popular jet algorithm is AK4

A good choice for q / g jets with $p T>25 \mathrm{GeV}$

JET ENERGY CORRECTIONS

Applied to data \longrightarrow

Applied to simulation

This is an example of the CMS chain of jet energy corrections Basic chain:
Correct for pileup (on average)
Correct for detector effects
Can be many things depending on detector: out-of-cone effects, detector response, material loss, etc.
Correct for data/MC
Correct for flavor of jet (q, g,b,etc.)

JET ENERGY CORRECTIONS

Applied to data

Applied to simulation
This is an example of the CMS chain Basic chain:

Correct for pileup (on average)
Correct for detector effects
Can be many things depending on detectc response, material loss, etc.
Correct for data/MC
Correct for flavor of jet (q, g,b,etc.)

Particle flow Jet angular resolution

CMS

ATLAS

PARTICLE FLOW JET ENERGY RESOLUTION

CMS

ATLAS

Comparing ATLAS \& CMS

Ecal+Hcal pion resolution	$\frac{\sigma}{E_{T}} \approx \frac{40 \%}{\sqrt{E_{T}}}$	$\frac{\sigma}{E_{T}} \approx \frac{100 \%}{\sqrt{E_{T}}} \oplus 7 \%$
Missing momentum resolufion (TDR)	$\frac{\sigma\left(E_{T}\right)}{\Sigma E_{T}} \approx \frac{60 \%}{\sqrt{2 E_{T}}}$	$\frac{\sigma\left(Z_{T}\right)}{\Sigma_{T}} \approx \frac{120 \%}{\sqrt{\Sigma^{E_{T}}}} \oplus 2 \%$
Inner tracker resolution (TDR)		
B field inner region	2 Testa : pT swept < 350 MeV	4 Testa : pT swept < 700 MeV

ATLAS has better calorimetry; CMS has better tracking
Good jet \& MET resolution important!
Improve CMS Jet \& MET resolution using full detector
Courtesy: Rick Cavanaugh

MISSING TRANSVERSE ENERGY

MET: the garbage collector
You need to understand EVERYTHING in your detector before you can understand missing energy!

MET is the absence of energy in your detector Important for signals with neutrinos, e.g. $\tau, \mathrm{W}, \mathrm{Z}, \mathrm{t}$ Important for beyond the SM signals like dark matter!

Important:
MET resolution - how well can you measure the energy of everything else without creating imbalances?
Physics: missing energy coming from resonances like ttbar
MET tails - how well can you understand the rare/pathological things in your reconstruction
Physics: non-resonant, high invisible energy like mono-jet

MET RESOLUTION

Core MET resolution vs. real MET tails
$Z(\mu \mu)$ events no real MET

The better the MET resolution, the better you can identify real MET Driven by jet resolution and how you hand soft unclustered deposits

MET TAILS

Noise cleaning and filtering
cleaning - remove anomalous spikes before doing reconstruction
filtering - remove anomalous events from the dataset

Sources:

Electronics/detector noise, e.g. spurious interactions with photodectors
Physics signals like beam halo muons
Reconstruction effects, poorly id'ed low pT muons

MET VALIDATION IN DATA

Use Drell-Yan events where a well-measured Z boson can be treated as MET to understand the recoil

Particle Flow MET

scale resolution

angular resolution

JET SUBSTRUCTURE

Finding structure in QCD radiation
At LHC energies, interesting heavy objects can be produced with a lot of boost.

Characteristic angular separation
$\Delta R_{\text {dau }}=2 \mathrm{~m}_{\text {mother }} / \mathrm{pT}$,mother

HIGH MASS RESONANCES

examples:
Graviton $\rightarrow \mathbf{W + W}$-, ZZ
Z',H \rightarrow tt
radion $\rightarrow \mathrm{HH}$
...
for graviton mass $=500 \mathrm{GeV}$
pt of $Z<250 \mathrm{GeV}$
$\Delta R_{q q} \sim 0.72$
N.B. Graviton $\rightarrow \mathrm{ZZ} \rightarrow 4$ I has a 100 smaller branching fraction

examples:
Graviton $\rightarrow \mathbf{W}+\mathbf{W}$-, ZZ
Z', H \rightarrow tt
radion $\rightarrow \mathrm{HH}$

...
for graviton mass $=1000 \mathrm{GeV}$

$$
\begin{gathered}
\text { PT of } Z<500 \mathrm{GeV} \\
\mathbf{\Delta} \mathbf{R}_{\mathbf{q q}} \sim \mathbf{0 . 3 6}
\end{gathered}
$$

N.B. Graviton $\rightarrow \mathrm{ZZ} \rightarrow 4$ I has a 100 smaller branching fraction

JET SUBSTRUCTURE

JET SUBSTRUCTURE

A JET REVOLUTION

udsg/c/b

$\{\eta, \phi, p т\}$
 $+$
 \{tracking\}

"flavor"-tagging:
b-tagging
c-tagging
uds-tagging

A JET REVOLUTION

$\mathrm{u} / \mathrm{ds} / \mathrm{g} / \mathrm{c} / \mathrm{b} / \mathrm{W} / \mathrm{Z} / \mathrm{H} / \mathrm{t} / \mathrm{pu}$
quantum numbers:
color charge (quarks vs. gluons) electric charge spin

An explosion in the field of jet substructure and properties!

\{m,shapes,subjets\}
"flavor"-tagging:
b-tagging
c-tagging
u/ds-tagging top-tagging
W/Z/H-tagging
pileup-tagging

JETS WITH DISPLACED VERTICES

Displacement $\sim>\mathrm{O}(\mathrm{mm})$ scale

OBSERVABLES

$\mathrm{pT}, \eta, \phi+\operatorname{tracking}$

mass

4-vector sum of jet constituents
highly sensitive to soft QCD and pileup; grooming can be used to mitigate these dependencies
substructure
several classes: declustering/reclustering, generalized jet shapes and energy flow, statistical interpretation, jet charge
algorithms
some combination of cuts on mass, shapes, tracking most typical in top tagging

And nowadays ... machine learning too!

OBSERVABLES

$\mathrm{pT}, \eta, \phi+$ tracking

mass

4-vector sum of jet constituents
highly sensitive to soft QCD and pileup; grooming can be used to mitigate these dependencies
substructure
several classes: declustering/reclustering, generalized jet shapes and energy flow, statistical interpretation, jet charge algorithms
some combination of cuts on mass, shapes, tracking most typical in top tagging

And nowadays ... machine learning too!

but jet mass is a perturbative quantity

$$
\left.\left\langle M^{2}\right\rangle \simeq \begin{array}{cc}
\text { quarks: } & 0.16 \\
\text { gluons: } & 0.37
\end{array}\right\} \times \alpha_{s} p_{t}^{2} R^{2}
$$

(GROOMED) MASS

JET SUBSTRUCTURE EXAMPLES

jet (groomed) mass:
a very powerful discriminator

JET SUBSTRUCTURE EXAMPLES

jet (groomed) mass:
a very powerful discriminator

how prong-y are these jets?

example: N -subjettiness

Example:
Semi-leptonic tt events are important for validating tagging techniques of heavy objects

Using events to do evaluate tag-and-probe efficiency scale factors and mass scale/resolution measurements

MACHINE LEARNING BOOM!

Courtesy: Ben Nachman

MACHINE LEARNING BOOM!

Courtesy: Ben Nachman

Jets and MET

Jet substructure and Pileup

searches for new physics at the kinematic limit require jet substructure techniques

Jet substructure and Pileup

searches for new physics at the kinematic limit require jet substructure techniques
jet substructure is characterizing radiation
[jets are just an organizing principle]
understanding radiation affects everything
e.g. jet substructure \leftrightarrow pileup mitigation
physics at intermediate (Higgs scale) energies are more affected by pileup

What Is Pileup?

additional pp interactions that occur in each beam crossing because the instantaneous bunch-by-bunch collision luminosity is very high

WHAT IS PILEUP?

"stochastic" vs. "hard" pileup jets

both contribute to pileup, it's not necessarily either/or

WHO FEELS PILEUP?

pileup matters pileup doesn't matter

asymptotic behavior local shape
tracking/vertexing precision timing depth segmentation

(apologies, not a complete list!)
ρ correction/subtraction
(area, 4-vector, shape, particle) grooming topoclustering charged hadron subtraction jet cleansing pileup jet ID

> " p subtraction"
> jet pt correction = median energy density \times area

asymptotic behavior

local shape
tracking/vertexing
precision timing
depth segmentation
energy

many variations of this method, including for jet shapes
Modification of the lepton isolation variable in PU

$$
I_{\Delta \beta}^{\mu}=\frac{\sum p_{T}^{\mathrm{CH}-\mathrm{PV}}+\max \left(0, \sum p_{T}^{\mathrm{NH}}+\sum p_{T}^{\gamma}-\frac{1}{2} \sum p_{T}^{\mathrm{CH}-\mathrm{PU}}\right)}{p_{T}^{\mu}}
$$

Using the charged-to-neutral ratio (2/3 vs. $1 / 3$) and vertexing information

asymptotic behavior

local shape

tracking/vertexing precision timing depth segmentation

jet grooming, cleans up soft and wide-angle radiation

"jet RMS" of forward pileup jets

asymptotic behavior local shape

Charged Hadron Subtraction (CHS)

Falls out naturally from Particle Flow!

tracking/vertexing
 precision timing depth segmentation

asymptotic behavior

 local shape tracking/vertexing precision timing depth segmentation

$\sigma_{t} \sim 30$ ps buys a factor of ~ 10 reduction in effective pileup
but open questions... e.g. can we achieve that time resolution for ~few GeV photons?

HANDLES ON PILEUP

asymptotic behavior

 local shape tracking/vertexing precision timing depth segmentation

clustering uses neighbors in depth too! no longer 2D clustering

HOLISTIC VIEWS ON PILEUP

Notice that each method that we've described works on a given physics object \cdots
each method presented so far also has its downfalls
What if we act on the event building blocks?
e.g. constituents/particles constituent subtraction, softkiller, PUPPI

What if we exploit all information possible simultaneously? asymptotic, local shape, tracking, etc...

What if, you could identify each particle in the event and give the likelihood that it's pileup?

THE PUPPI APPROACH:

Pilemp Per Particle Identification

Define on a per particle basis, before jet clustering, a weight for how likely a particle (or jet constituent) is to be from pileup or the leading vertex, then rescale each particle four momentum by that weight

$$
\alpha_{i}^{C}=\log \left[\sum_{j \in \mathrm{Ch}, \mathrm{LV}} \frac{p_{T, j}}{\Delta R_{i j}} \Theta\left(R_{0}-\Delta R_{i j}\right)\right]
$$

define an ai per particle; sample the PU a distribution per event; ask how likely particle i is to be pileup

PUPPI (IN CARTOONS)

PUPPI (IN CARTOONS)

LV charged
LV neutral
PU charged
PU neutral
chosen
removed

1. use tracking info

PUPPI (IN CARTOONS)

OLV charged
LV neutral
PU charged
PU neutral chosen
removed

1. use tracking info
2. look around neutrals

PUPPI (IN CARTOONS)

LV charged

LV neutral
PU charged
PU neutral
chosen
removed

1. use tracking info
2. look around neutrals
3. remove " 0 " neutrals

PUPPI (IN CARTOONS)

LV charged
LV neutral
PU charged
PU neutral
chosen
removed

1. use tracking info
2. look around neutrals
3. remove "0" neutrals
4. assign fractional weight to ambiguous cases

PUPPI (IN CARTOONS)

LV charged
LV neutral
PU charged
PU neutral chosen

1. use tracking info
2. look around neutrals
3. remove "0" neutrals
4. assign fractional weight to ambiguous cases
recluster event, new jet!

PileUp Per Particle Id

colored cells = process of interest

black cells = pileup

N.B. Particle level studies assuming perfect tracking for $|\eta|<2.5$
"Classic" use-case for per particle pileup mitigation, it works for all jet shapes

Here, this is the effect of PUPPI on W-tagging shown for PFCHS inputs vs. PUPPI inputs

PUPPI PERFORMANCE

20-30\% resolution improvement in the MET resolution @ Npv~20 over traditional "PU" corrected MET

PUPPI PERFORMANCE

25\% decrease in backgrounds using per particle uncertainties at 20 PU !
"combined" curve uses both muon hypotheses
Vs. traditional methods

CONTRAST AGAINST UNDERLYING EVENT

CONTRAST AGAINST UNDERLYING EVENT

Multiple Parton Interactions Outgoing Parion

phion
pbion
Protap
Underlying Even!

Underlying event in heavy ions
Similar to A LOT of pileup, but without a vertexing handle
\cdots. and it has some correlated structure!

"UNDERLYING EVENT" IN HEAVY IONS

Distance ($\Delta \mathrm{R}$)

"Underlying event" In Heavy ions

Distance ($\Delta \mathrm{R}$)

EXAMPLE: CONSTITUENT SUBTRACTION

Credit: Chris McGinn

JET STRUCTURE IN HEAVY IONS

Example: modification of substructure splitting function in HI!

3D. VERY EXOTIC OBJECTS

LONG-LIVED EXOTICS

Long-lived Theoretical Motivations

Including but not limited to:

- Split SUSY
- Baryogenesis
- Twin Higgs
- RPV SUSY
- Emerging Jets
- Semi-visible Jets
- Dark Photons
- GMSB

- Hidden Valley Models

VERY EXOTIC SIGNATURES

Very exotic signatures

LONG-LIVED, THINGS TO KEEP IN MIND

A rich variety of signals

Displaced signals at ct > lmm
Reminder: prompt and displaced not exclusive, lifetime distribution $\sim e^{-\tau}$
Out-of-time signals
New tracking, kinked tracks,

Important to remember that we have to pass the trigger
Make sure we save such events!
This can be very non-trivial including new hardware triggers
Use the detector in creative ways!
$\mathrm{dE} / \mathrm{dX}$ as a powerful discriminator
How can we use timing to improve things?
Often times, this requires developing completely new types of reconstruction algorithms!

WRAPPING UP

My goals for the lectures:

- understand how the design of the detector map into efficient reconstruction of important physics processes
- give basic concept of those reconstruction algorithms
- illustrate examples of how simple reconstruction techniques are built to create composite and complex physics objects

In the landscape of linear luminosity scaling, reconstruction is a great place to improve and extend physics capability

The detectors are more or less fixed; the luminosity is steadily increasing
Room for creativity! Think about novel, interesting, significant physics signals and how you would best detect them.
A fertile area for machine learning applications

