Machine learning for particle physicists

II. Introduction to neural networks

Anja Butter

26th Vietnam School of Physics

Recap I - Linear Regression

Task: Model calorimeter response

Model:
Loss function:

Optimized parameters:

$$
h(\boldsymbol{x})=\boldsymbol{x} \boldsymbol{w}=\tilde{y} \leftarrow \text { prediction }
$$

$$
\mathcal{L}=\sum_{i}^{n_{\text {data }}}\left(y_{i}-\tilde{y}\right)^{2}
$$

$$
\boldsymbol{w}_{\text {opt }}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}
$$

Recap II - Logistic Regression

Task: Classify jets
Model:

$$
h(\boldsymbol{x})=\sigma(\boldsymbol{x} \boldsymbol{w})=P(y=1 \mid \boldsymbol{x}) \leftarrow \text { probability }
$$

Loss function:

$$
\mathcal{L}=\sum_{i}-y_{i} \log \left(h\left(\boldsymbol{x}_{i}\right)\right)-\left(1-y_{i}\right) \log \left(1-h\left(\boldsymbol{x}_{i}\right)\right)
$$

Parameter optimization:

$$
\boldsymbol{w}_{n} \rightarrow \boldsymbol{w}_{n+1}=\boldsymbol{w}_{n}+\alpha \nabla_{\boldsymbol{w}} \mathcal{L}\left(\boldsymbol{w}_{n}\right)
$$

Limitations

So far we were limited to linear separations:

\rightarrow Need more complex models to learn complex structures
Many possibilities:
boost decision trees \rightarrow popular, close to intuitive cut \& count analysis

Decision Trees

Example from single top measurement

\Rightarrow Further information: boosting, random forest

Limitations

So far we were limited to linear separations:

\rightarrow Need more complex models to learn complex structures
Many possibilities:
boost decision trees \rightarrow popular, close to intuitive cut \& count analysis

Limitations

So far we were limited to linear separations:

\rightarrow Need more complex models to learn complex structures
Many possibilities:
boost decision trees \rightarrow popular, close to intuitive cut \& count analysis support vector machines \rightarrow often very good baseline
neural networks \rightarrow more flexibility, excellent performance

Why neural?

Inspiration from brain

Image source: Wikimedia Commons
(1) Dendrites get incoming signal
(2) Soma processes signal (fire?!)
(3) Axon transports signal to cells
(4) Synapse connects to other dendrites

Intelligence is somehow the product of the connection of many neurons.

An artificial neuron

Combination of linear mapping \& non-linear activation function

A simple neural network

Every line represents a free parameter called weight

The math behind a neural network

Matrix multiplications...

$$
\left.\boldsymbol{x}=\begin{array}{c}
\text { input } \\
{\left[n_{\text {data }} \times\right.} \\
\left.d_{\text {feat }}\right]
\end{array}\right]
$$

The math behind a neural network

Matrix multiplications...

The math behind a neural network

Matrix multiplications...

The math behind a neural network

Matrix multiplications...

The math behind a neural network

Matrix multiplications...

If we combine several linear layers...

$$
\begin{aligned}
\boldsymbol{Y} & =\boldsymbol{X} \cdot W_{1} \cdot W_{2} \cdot W_{\text {out }} \\
& =\boldsymbol{X}_{i j} W_{1, j k} W_{2, k l} W_{\text {out }, l} \quad \leftarrow \text { Einstein summation convention } \\
& =\boldsymbol{X}_{i j} \tilde{\boldsymbol{w}}_{j} \quad \text { with } \tilde{\boldsymbol{w}}=W_{1, j k} W_{2, k l} W_{\text {out }, l} \\
& \ldots \text { we obtain a linear layer! }
\end{aligned}
$$

Not more expressiveness than a simple scalar product!
\rightarrow Include non-linearities

Activation functions

The right choice can facilitate the training:
\rightarrow smooth/sharp, limited/unlimited, computing time efficient, ...

- Limited (typically for classification)
- Sigmoid: $\sigma(x)=\frac{1}{1+e-x}$
- Step: $\theta(x)=\operatorname{sign}(x)$
- tanh: $\tanh (x)$

- Unlimited
- ReLU: $\max (0, x)$
- Leaky ReLU: $\max (\alpha x, x)$
- ELU: $\begin{cases}x & \text { if } x>0 \\ \alpha\left(e^{x}-1\right) & \text { if } x<0\end{cases}$

A simple neural network

Finally we have obtained an expressive network!
But how can we train it?
Gradient descent?!

How to minimize the loss

Remember gradient descent for logistic regression:

$$
\rightarrow \boldsymbol{w}_{n+1}=\boldsymbol{w}_{n}+\alpha \nabla_{\boldsymbol{w}} \mathcal{L}\left(\boldsymbol{w}_{n}\right)
$$

We start from the last layer:
Let $\tilde{\boldsymbol{X}}$ be the latent representation after the 2. layer

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{w}_{\text {out }}\right) & =\sum_{j=1}^{n_{\text {odata }}}\left(\sigma\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}-Y_{j}\right)^{2} \\
\frac{\partial \mathcal{L}\left(\boldsymbol{w}_{\text {out }}\right)}{\partial w_{\text {out }, i}} & =\sum_{j=1}^{n_{\text {dota }}} 2\left(\sigma\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}-Y_{j}\right) \cdot \frac{\partial \sigma\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}}{\partial w_{\text {out }, i}} \leftarrow \text { chain rule } \\
& =\sum_{j=1}^{n_{\text {data }}} 2\left(\sigma\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}-Y_{j}\right) \cdot \frac{\partial \sigma\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}}{\partial\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}} \cdot \frac{\partial\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}}{\partial w_{\text {out }, i}}
\end{aligned}
$$

How to minimize the loss

Remember gradient descent for logistic regression:

$$
\rightarrow \boldsymbol{w}_{n+1}=\boldsymbol{w}_{n}+\alpha \nabla_{\boldsymbol{w}} \mathcal{L}\left(\boldsymbol{w}_{n}\right)
$$

We start from the last layer:
Let $\tilde{\boldsymbol{X}}$ be the latent representation after the 2. layer

$$
\begin{aligned}
\mathcal{L}\left(\boldsymbol{w}_{\text {out }}\right) & =\sum_{j=1}^{n_{\text {osta }}}\left(\sigma\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}-Y_{j}\right)^{2} \\
\frac{\partial \mathcal{L}\left(\boldsymbol{w}_{\text {out }}\right)}{\partial w_{\text {out }, i}} & =\sum_{j=1}^{n_{\text {data }}} 2\left(\sigma\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}-Y_{j}\right) \cdot \frac{\partial \sigma\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}}{\partial w_{\text {out }, i}} \leftarrow \text { chain rule } \\
& =\sum_{j=1}^{n_{\text {data }}} 2\left(\sigma\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}-Y_{j}\right) \cdot \frac{\partial \sigma\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}}{\partial\left(\tilde{\boldsymbol{X}} \boldsymbol{w}_{\text {out }}\right)_{j}} \cdot \tilde{X}_{j i}
\end{aligned}
$$

Backpropagation

Backpropagation

Updating the n-th layer

> output
> $w_{\text {out }}=\left[d_{12} \times 1\right]$

$$
\rightarrow \frac{\partial \mathcal{L}}{\partial \sigma_{3}} \frac{\partial \sigma_{3}}{\partial \operatorname{lin} 3}
$$

Updating the n-th layer

layer 2
$\left.W_{2}=\left[\begin{array}{ll}d_{l 1} \times & d_{12}\end{array}\right] \leftrightarrow \begin{array}{c}\text { output } \\ w_{\text {out }}=\left[d_{12} \times 1\right.\end{array}\right]$

$$
\rightarrow \frac{\partial \mathcal{L}}{\partial \sigma_{3}} \frac{\partial \sigma_{3}}{\partial \operatorname{lin} 3} \cdot \frac{\partial \operatorname{lin} 3}{\partial \sigma_{2}} \frac{\partial \sigma_{2}}{\partial \operatorname{lin} 2}
$$

Updating the n-th layer

$$
\begin{gathered}
\text { layer } 1 \\
W_{1}=\left[d_{\text {feat }} \times d_{11}\right]
\end{gathered} \begin{gathered}
\text { layer } 2 \\
W_{2}=\left[d_{/ 1} \times d_{12}\right]
\end{gathered} \leftarrow \begin{gathered}
\text { output } \\
w_{\text {out }}=\left[d_{12} \times 1\right]
\end{gathered}
$$

$$
\rightarrow \frac{\partial \mathcal{L}}{\partial \sigma_{3}} \frac{\partial \sigma_{3}}{\partial \operatorname{lin} 3} \cdot \frac{\partial \operatorname{lin} 3}{\partial \sigma_{2}} \frac{\partial \sigma_{2}}{\partial \operatorname{lin} 2} \cdot \frac{\partial \operatorname{lin} 2}{\partial \sigma_{1}} \frac{\partial \sigma_{1}}{\partial \operatorname{lin} 1}
$$

Updating the n-th layer

input $\boldsymbol{X}=\left[n_{\text {data }} \times d_{\text {feat }}\right]$	layer 1 $W_{1}=\left[d_{\text {feat }} \times d_{l 1}\right]$	layer 2 $W_{2}=\left[d_{l 1} \times d_{12}\right]$

$$
\rightarrow \frac{\partial \mathcal{L}}{\partial \sigma_{3}} \frac{\partial \sigma_{3}}{\partial \operatorname{lin} 3} \cdot \frac{\partial \operatorname{lin} 3}{\partial \sigma_{2}} \frac{\partial \sigma_{2}}{\partial \operatorname{lin} 2} \cdot \frac{\partial \operatorname{lin} 2}{\partial \sigma_{1}} \frac{\partial \sigma_{1}}{\partial \operatorname{lin} 1} \cdot \frac{\partial \operatorname{lin} 1}{\partial W_{1}}
$$

Updating the n-th layer

$$
\begin{aligned}
& \rightarrow \frac{\partial \mathcal{L}}{\partial \sigma_{3}} \frac{\partial \sigma_{3}}{\partial \operatorname{lin} 3} \cdot \frac{\partial \operatorname{lin} 3}{\partial \sigma_{2}} \frac{\partial \sigma_{2}}{\partial \operatorname{lin} 2} \cdot \frac{\partial \operatorname{lin} 2}{\partial \sigma_{1}} \frac{\partial \sigma_{1}}{\partial \operatorname{lin} 1} \cdot \frac{\partial \operatorname{lin} 1}{\partial W_{1}}
\end{aligned}
$$

Latest winner of ImageNet 'ViT-H/14' has 32 layers with a total of 632 M parameters Let's start calculating...?

Automatic gradient computations

Backpropagation implemented via computation graphs in dedicated frameworks

Ayoosh Kathuria

High-level ML frameworks

- TensorFlow \& PyTorch \rightarrow DNN
- Keras \rightarrow user friendly TF interface
- Scikit-learn \rightarrow SVM, BDT, clustering
- Spark ML \rightarrow part of Spark, basic ML
- Hugging face \rightarrow NLP, transformers

Which framework to choose for NN?

Biggest players: PyTorch (facebook) and TensorFlow (google)

Weltweit. Letzte 5 Jahre. Websuche.

Before you start training your own neural network

Let's talk about:

\rightarrow efficient training
\rightarrow overtraining (overfitting)

Stochastic gradient descent

- Loss defined on entire dataset
- Each weight update: gradient for full dataset \rightarrow very computing expensive!

Stochastic gradient descent

- Loss defined on entire dataset
- Each weight update: gradient for full dataset \rightarrow very computing expensive!
- SGD: 1 iteration: gradient for 1 random data point
- Compromise: batch gradient descent (batch size: 32/62/.../1024)

+ faster
+ less sensitive to local minima
+ profit from vectorization

Overtraining

... when networks start to learn "noise"

How to control overtraining?

Split data into training/validation/test data

- Training loss \nearrow validation loss $\searrow \Rightarrow$ overfitting
- Why do we need test data?
- How would you split your dataset? 1:1:1? 8:1:1?

How to control overtraining?

Split data into training/validation/test data

- Training loss \nearrow validation loss $\searrow \Rightarrow$ overfitting
- Why do we need test data?
- parameter tests $=$ training on validation dataset
- How would you split your dataset? 1:1:1? 8:1:1?

How to control overtraining?

Split data into training/validation/test data

- Training loss \nearrow validation loss $\searrow \Rightarrow$ overfitting
- Why do we need test data?
- parameter tests $=$ training on validation dataset
- How would you split your dataset? $1: 1: 1$? $8: 1: 1$?
- dataset dependent
- val/test data large enough to test performance

Today's summary

We saw:

- How to build a network with multiple layers
- Why we need activation functions in each layer
- How to train a deep neural network \rightarrow Backpropagation
- Stochastic/batch gradient descent
- Overtraining \rightarrow Train - validate - test

Now you can start training your own neural network!

Procrastination over the course of time

credits: XKCD \& u/AmpyeriDracula

