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Recap I - Linear Regression

Task: Model calorimeter response

Model: h(x) = xw = ỹ ← prediction

Loss function: L =

ndata∑
i

(yi − ỹ)2

Optimized parameters: w opt = (XTX )−1XTy
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Recap II - Logistic Regression

Task: Classify jets

Model: h(x) = σ(xw) = P(y = 1|x)← probability

Loss function: L =
∑
i

−yi log (h(x i ))− (1− yi ) log (1− h(x i ))

Parameter optimization: wn → wn+1 = wn + α∇wL(wn)

3 / 41



Limitations
So far we were limited to linear separations:

→ Need more complex models to learn complex structures

Many possibilities:

boost decision trees→ popular, close to intuitive cut & count analysis
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Decision Trees

Example from single top measurement

purity =
s

s + b

⇒ Further information: boosting, random forest
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Why neural?

Inspiration from brain

1 Dendrites get incoming signal

2 Soma processes signal (fire?!)

3 Axon transports signal to cells

4 Synapse connects to other dendrites

Intelligence is somehow the product of the connection of many neurons.
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An artificial neuron

→ output = f (
∑
i

xiwi )

= f (xw)

Combination of linear mapping & non-linear activation function
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A simple neural network

Every line represents a free parameter called weight
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The math behind a neural network
Matrix multiplications...

input
X = [ndata × dfeat ]

X
[ndata × dfeat ]

layer 1
W1 = [dfeat × dl1]

XW1

[ndata × dl1]

layer 2
W2 = [dl1 × dl2]

XW1W2

[ndata × dl2]

output
wout = [dl2 × 1]

XW1W2wout

[ndata × 1]
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If we combine several linear layers...

Y = X ·W1 ·W2 · wout

= X ijW1,jkW2,klWout,l ← Einstein summation convention

= X ij w̃ j with w̃ = W1,jkW2,klWout,l

... we obtain a linear layer!

Not more expressiveness than a simple scalar product!

→ Include non-linearities
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Activation functions

The right choice can facilitate the training:
→ smooth/sharp, limited/unlimited, computing time efficient, . . .

4 2 0 2 4
x

1.0

0.5

0.0

0.5

1.0

sigmoid
step
tanh

4 2 0 2 4
x

0

2

4 ReLU
Leaky ReLU
ELU

• Limited (typically for classification)

• Sigmoid: σ(x) =
1

1 + e − x
• Step: θ(x) = sign(x)
• tanh: tanh(x)

• Unlimited
• ReLU: max(0, x)
• Leaky ReLU: max(αx , x)

• ELU:

{
x if x > 0

α(ex − 1) if x < 0
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A simple neural network

input
X = [ndata × dfeat ]

X
[ndata × dfeat ]

layer 1
W1 = [dfeat × dl1]

σ(XW1)
[ndata × dl1]

layer 2
W2 = [dl1 × dl2]

σ(σ(XW1)W2)
[ndata × dl2]

output
wout = [dl2 × 1]

σ(σ(σ(XW1)W2)wout)
[ndata × 1]

Y

Finally we have obtained an expressive network!
But how can we train it?

Gradient descent?!
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How to minimize the loss

Remember gradient descent for logistic regression:

→ wn+1 = wn + α∇wL(wn)

We start from the last layer:
Let X̃ be the latent representation after the 2. layer

L(w out) =

ndata∑
j=1

(σ(X̃w out)j − Yj)
2

∂L(w out)

∂wout,i
=

ndata∑
j=1

2(σ(X̃w out)j − Yj) ·
∂σ(X̃w out)j
∂wout,i

← chain rule

=

ndata∑
j=1

2(σ(X̃w out)j − Yj) ·
∂σ(X̃w out)j

∂(X̃w out)j
· ∂(X̃w out)j

∂wout,i
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Backpropagation

Backpropagation
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Updating the n-th layer

output
wout = [dl2 × 1]

layer 2
W2 = [dl1 × dl2]

layer 1
W1 = [dfeat × dl1]

input
X = [ndata × dfeat ]

→
∂L
∂σ3

∂σ3

∂lin3

·
∂lin3

∂σ2

∂σ2

∂lin2
·
∂lin2

∂σ1

∂σ1

∂lin1
·
∂lin1

∂W1

Latest winner of ImageNet ’ViT-H/14’ has 32 layers with a total of 632M parameters
Let’s start calculating...?
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Automatic gradient computations

Backpropagation implemented via computation graphs in dedicated
frameworks

Ayoosh Kathuria
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High-level ML frameworks

• TensorFlow & PyTorch → DNN

• Keras → user friendly TF interface

• Scikit-learn → SVM, BDT, clustering

• Spark ML → part of Spark, basic ML

• Hugging face → NLP, transformers
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Which framework to choose for NN?

Biggest players: PyTorch (facebook) and TensorFlow (google)
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Before you start training your own neural network

Let’s talk about:

→ efficient training

→ overtraining (overfitting)
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Stochastic gradient descent
• Loss defined on entire dataset
• Each weight update: gradient for full dataset
→ very computing expensive!

• SGD: 1 iteration: gradient for 1 random data point
• Compromise: batch gradient descent (batch size: 32/62/.../1024)

+ faster
+ less sensitive to local minima
+ profit from vectorization
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Overtraining

... when networks start to learn ”noise”
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How to control overtraining?

Split data into training/validation/test data

• Training loss ↗ validation loss ↘ ⇒ overfitting

• Why do we need test data?

• parameter tests = training on validation dataset

• How would you split your dataset? 1:1:1? 8:1:1?

• dataset dependent
• val/test data large enough to test performance
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Today’s summary

We saw:

• How to build a network with multiple layers

• Why we need activation functions in each layer

• How to train a deep neural network → Backpropagation

• Stochastic/batch gradient descent

• Overtraining → Train - validate - test

Now you can start training your own neural network!
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Procrastination over the course of time

credits: XKCD & u/AmpyeriDracula
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