Contents

- 1. Introduction
- 2. Evidence for dark matter
- 3. Genesis of dark matter
- 4. Detection of dark matter

How large is the Universe?

Mountain (10³ m)

• Earth (10⁷ m)

• Sun (10⁹ m)

 Galaxy (10²¹ m) (Andromeda Galaxy)

Galaxy cluster (10²³ m)
 (Virgo Cluster)

• CMB (10²⁷ m)

Units

Astronomical unit (AU)

Originally distance from the Earth to the Sun

$$1 \text{ AU} = 1.50 \times 10^{11} \text{ m}$$

Light-year (ly)

Distance that light travels in a year

$$1 \text{ ly} = 6.32 \times 10^4 \text{ AU} = 9.46 \times 10^{15} \text{ m}$$

Parsec (pc)

Distance at which 1 AU subtends
 1 arcsecond (= 1/3600 degree)

1 pc =
$$3.26 \text{ ly} = 2.07 \times 10^5 \text{ AU} = 3.09 \times 10^{16} \text{ m}$$

$$1 \text{ Mpc} = 10^3 \text{ kpc} = 10^6 \text{ pc}$$

Physical constants

Newton gravitational constant

$$G = 6.67 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$$

Planck mass

$$m_{\mathrm{Pl}} = \sqrt{\frac{\hbar c}{G}}$$

Solar mass

$$M_{\odot} = 1.99 \times 10^{30} \text{ kg}$$

Solar luminosity

$$L_{\odot} = 3.83 \times 10^{26} \text{ W}$$

Mass-to-light ratio

Zwicky (1933)

 The galaxies of the Coma Cluster move too fast compared to the amount of the luminous mass

* Galaxy clusters: largest gravitationally bound structures containing 100-1000 galaxies

Existence of unseen matter (dark matter)

Coma Cluster

[spitzer.caltech.edu]

Mass-to-light ratio

Virial theorem

- Relation between the time average of the kinetic energy and that of the potential energy of a bound system
- ullet For the gravitational potential $V \propto 1/r$,

$$\langle T \rangle = -\frac{1}{2} \langle V \rangle$$

$$\langle T \rangle \sim M v^2$$

$$\langle V \rangle \sim -\frac{GM^2}{R}$$

Coma cluster

- Velocity dispersion: $v^2 = 5 \times 10^{11} \text{ m}^2 \text{s}^{-2}$
- Radius: $R=10^{22}~{
 m m}$ Luminosity: $L=8.5 imes 10^{10} L_{\odot}$
- \longrightarrow Mass-to-light ratio: $M/L \sim 400 M_{\odot}/L_{\odot}$

Rotation curve

* Rotation curve: plot of orbital speeds vs. radial distance

Solar system

- Consider a planet w/ mass m at distance r from the Sun, moving w/ orbital velocity v
- Balance between centrifugal and gravitational forces:

$$m\frac{v^2}{r} = G\frac{M_{\odot}m}{r^2}$$

$$v = \sqrt{\frac{GM_{\odot}}{r}}$$

[Raffelt, hep-ph/9712538]

Rotation curve

Spiral galaxies

• Orbital velocity of a star \mathbf{w}/m mass m at distance r from the galactic center

$$v = \sqrt{\frac{GM(< r)}{r}}$$

Observation:

Rotation curve of spiral galaxy M33

[researchgate.net]

For large distances from the galactic center

$$v \sim \text{const.} \longrightarrow M(< r) \propto r$$

Profile of dark halos

• Assuming sphericity for the halo mass density ho =
ho(r),

$$M(< r) = 4\pi \int_0^r dr' r'^2 \rho(r')$$

Isothermal profile

- For a constant velocity, $\rho(r) \propto r^{-2}$
- For avoiding the central singularity, we often assume $\rho(r) = \rho_0 \frac{R_0^2 + a^2}{r^2 + a^2}$
- Case of the Milky way
 - Galactocentric radius of the Sun: $R_0 = 8.5 \; \mathrm{kpc}$
 - Core radius of the halo: a = 5 kpc
 - Local density in the solar system: $\rho_0 = 0.2 0.8 \text{ GeV cm}^{-3}$ (Canonical value in the literature: $\rho_0 = 0.3 \text{ GeV cm}^{-3}$)

19

Profile of dark halos

 Simulations have been performed to obtain the actual profile, but have not converged

Proposed analytic profiles

10" 30"1"

[Cirelli et al., JCAP 03, 051 (2011)]

r [kpc]

Angle from the GC [degrees]

5' 10' 30' 1° 2° 5° 10°20°45°

Gravitational lensing

- Deflection of light caused by the gravitational field of a (very large) mass
- First test of Einstein's general relativity

b: Distance of closest approach

M: Mass of a galaxy or galaxy cluster

Bending angle:

$$\alpha = \frac{4GM}{b}$$

Gravitational lensing

Two images

$$\theta_1 = \frac{1}{2} \left(\theta_S \pm \sqrt{\theta_S^2 + 4\theta_E^2} \right)$$

$$\theta_E = \sqrt{\frac{4GMD_{\rm LS}}{D_S D_L}}$$

Einstein ring

• In the collider case ($\theta_S = 0$), a ring image appears

$$\theta_1 = \theta_E$$

Bullet cluster

- Lensing galaxies or clusters are extended objects
- Analysis of the multiple images of distant sources gives the mass distribution of the foreground galaxy or cluster

Galaxy cluster 1E 0657-558

Two clusters having passed through each other Hot gas (ordinary matter)

> (from satellite X-ray measurement) Slowed due to EM int.

Dark matter

(from gravitational lensing)

The separation cannot be explained by modified gravity 23

Cosmological scales

Cosmological parameters

Friedmann equation

$$\sum_{i} \Omega_i + \Omega_{\Lambda} - 1 = \frac{k}{R^2 H^2}$$

 Ω_i : Density parameters for species i

 Ω_{Λ} : Density parameter for the cosmological constant

k: Curvature constant

R: Scale factor

H: Hubble expansion rate

Cosmological scales

- Data of cosmological observations depends on the cosmological parameters
- Present data most notably from CMB anisotropy prefers the Lambda cold dark matter (Lambda-CDM) model:
 - Curvature: k=0
 - Cold (non-relativistic), non-baryonic dark matter: $\Omega_{\mathrm{CDM}} \simeq 0.25$
 - Baryonic matter including baryonic dark matter:

$$\Omega_{\rm baryon} \simeq 0.05$$

- Cosmological constant: $\Omega_{\Lambda} \simeq 0.70$

We need a new theory with cold dark matter

Properties of dark matter

- Electrically neutral (or extremely weakly charged)
- Very weakly (at least gravitationally) interacting with ordinary matter
- Stable (or very long-lived as long as the Universe)
- Cold (i.e. non-relativistic)
- Non-baryonic
- Around 25% of the energy density of the Universe

Dark matter candidates must fit these conditions