Machine learning for particle physicists I. Linear models for regression and classification

Anja Butter

26th Vietnam School of Physics

Machine Learning seems to be everywhere

The triumph of AlexNet in 2012 triggered a ML wave!

Why Machine Learning in particle physics?

LHC = BIG data

applications: jet calibration track reconstruction calorimeter simulation particle identification event generation

Formal definition

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.

Tom Michael Mitchell (1997)

Formal definition

A computer program is said to learn from experience

if its performance at tasks

improves with experience .

Tom Michael Mitchell (1997)

What it feels like (sometimes)

What it feels like (sometimes)

Aim of this lecture:

Giving you the tools for a systematic approach to use ML in particle physics

Can Machine Learning do anything?

A word of caution before we dive in

Thanks to machine-learning algorithms, the robot apocalypse was short-lived.

The core of machine learning is to find structure in data - no more no less. Beware the data prior!

How to become a ML expert?

http://nirvacana.com/thoughts/2013/07/08/becoming-a-data-scientist/

Luckily we are physicists :)

This lecture: We will start with a simple problem and learn new things on a need-to-know basis

The following lectures build on each other. \rightarrow If anything is unclear, please do not hesitate to ask!

Can we predict the signal of a calorimeter?

Setting up a machine learning problem

Dataset
$$(x_i, y_i)_{i=1,...,n}$$

feature label
(particle E, id, ...) (signal)

True function
$$f : X \to Y, f(x_i) = y_i$$

Hypothesis $h \in H : X \to Y, f(x_i) = \tilde{y}_i \leftarrow$ prediction

Loss:

$$\mathcal{L}_{MSE} = \frac{1}{n} \sum_{i}^{n} (y_i - \tilde{y}_i)^2$$

(measure for goodness of approximation)

Learning: Minimization of the loss function

Can we predict the signal of a calorimeter?

Univariate linear regression

Find optimal linear model \rightarrow depends on data and chosen loss function

Can we predict the signal of a calorimeter?

Univariate linear regression

Find optimal linear model \rightarrow depends on data and chosen loss function

Chosen loss: mean squared error

$$\mathcal{L}_{MSE} = \frac{1}{n} \sum_{i}^{n} (y_i - \tilde{y}_i)^2$$
$$= \frac{1}{n} \sum_{i}^{n} \left(y_i - \begin{pmatrix} x_i \\ 1 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \right)^2 \quad \text{with } \begin{pmatrix} x_i \\ 1 \end{pmatrix} = \boldsymbol{x}_i, \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \boldsymbol{w}$$

Chosen loss: mean squared error

$$\mathcal{L}_{MSE} = \frac{1}{n} \sum_{i}^{n} (y_i - \tilde{y}_i)^2$$
$$= \frac{1}{n} \sum_{i}^{n} \left(y_i - \begin{pmatrix} x_i \\ 1 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \right)^2 \quad \text{with } \begin{pmatrix} x_i \\ 1 \end{pmatrix} = \boldsymbol{x}_i, \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \boldsymbol{w}$$

Minimizing the loss $\min_{w_j} \mathcal{L}_{MSE} \to \nabla_w \mathcal{L}_{MSE} = \sum_{i=1}^n 2(y_i - \boldsymbol{x}_i \boldsymbol{w}) \, \boldsymbol{x}_i \stackrel{!}{=} 0$

Chosen loss: mean squared error

$$\mathcal{L}_{MSE} = \frac{1}{n} \sum_{i}^{n} (y_i - \tilde{y}_i)^2$$
$$= \frac{1}{n} \sum_{i}^{n} \left(y_i - \begin{pmatrix} x_i \\ 1 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \right)^2 \quad \text{with } \begin{pmatrix} x_i \\ 1 \end{pmatrix} = \boldsymbol{x}_i, \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \boldsymbol{w}$$

Minimizing the loss

$$\min_{w_j} \mathcal{L}_{MSE} \to \nabla_w \mathcal{L}_{MSE} = \sum_{i=1}^n 2(y_i - \boldsymbol{x}_i \boldsymbol{w}) \, \boldsymbol{x}_i \stackrel{!}{=} 0$$

$$\rightarrow (I.) \sum_{i=1}^{n} (y_i - \mathbf{x}_i \mathbf{w}) = 0 \qquad (II.) \sum_{i=1}^{n} (y_i - \mathbf{x}_i \mathbf{w}) x_i = 0$$
$$\mathbf{w} \sum_{i=1}^{n} \mathbf{x}_i = \sum_{i=1}^{n} y_i \qquad \text{Exercise}$$
$$w_2 = \bar{y} - w_1 \bar{x} \qquad w_1 = ?$$

Exact analytic solution:

$$w_1 = \frac{\sum_{i=1}^{n} (y_i - \bar{y}) (x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$w_2 = \bar{y} - w_1 \bar{x}$$

Python/numpy warm up exercise: \rightarrow Implement this problem (git)

Multivariate linear regression

We can generalize our result to multidimensional feature vectors! Adopting a more compact notation we write:

$$\tilde{\boldsymbol{y}} = \begin{pmatrix} \tilde{y}_1 \\ \tilde{y}_2 \\ \vdots \\ \tilde{y}_n \end{pmatrix} = \begin{pmatrix} x_{11}w_1 + x_{12}w_2 + \dots + x_{1d}w_d \\ x_{21}w_1 + x_{22}w_2 + \dots + x_{2d}w_d \\ \vdots \\ x_{n1}w_1 + x_{n2}w_2 + \dots + x_{nd}w_d \end{pmatrix} = \boldsymbol{X} \boldsymbol{w}$$

Minimizing the loss yields

$$abla_{\boldsymbol{w}} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}||^2 = \sum_{i=1}^n 2(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) \boldsymbol{X} \stackrel{!}{=} 0$$

 $\rightarrow \boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$

Classification vs Regression

cats vs dogs smartphone price particle identification top vs QCD jets amplitude ...?

Can we predict the type of a jet

Setting up a classification problem

Hypothesis: $h(\mathbf{x}_i) = \tilde{y}_i \in [0, 1] \leftarrow \text{prediction}$

Interpretation: $h(\mathbf{x}_i) = P(y_i = 1 | \mathbf{x}_i) \leftarrow \text{probability}$

Minimize probability that h assigns wrong class.

How to build a loss function for classification

If
$$h(\mathbf{x}_i) = P(y_i = 1 | \mathbf{x}_i)$$
 then $\rightarrow P(y_i = 0 | \mathbf{x}_i) = 1 - h(\mathbf{x}_i)$

Maximize the likelihood:

$$\mathcal{L} = \prod_{\mathbf{x}_i | y_i = 1} P(y_i = 1 | \mathbf{x}_i) \prod_{\mathbf{x}_i | y_i = 0} P(y_i = 0 | \mathbf{x}_i)$$

= $\prod_i h(\mathbf{x}_i)^{y_i} (1 - h(\mathbf{x}_i))^{1 - y_i}$
min - log $\mathcal{L} = \min_h \sum_i -\log(h(\mathbf{x}_i)) \cdot y_i - \log(1 - h(\mathbf{x}_i)) \cdot (1 - y_i)$

Choosing a suitable model

Problem: $0 < h(\mathbf{x}_i) < 1 \rightarrow$ naive linear model not suitable

Use sigmoid function instead:

$$egin{aligned} &
ightarrow h(m{x}) = \sigma(m{x}m{w}) \ &= rac{1}{1+e^{-m{x}m{w}}} \end{aligned}$$

Choosing a suitable model

Problem: $0 < h(\mathbf{x}_i) < 1 \rightarrow$ naive linear model not suitable

Use sigmoid function instead:

Insert our model into the loss function:

$$\begin{split} \min_{h} -\log \mathcal{L} &= \min_{h} \sum_{i} -y_{i} \log \left(h(\boldsymbol{x}_{i}) \right) - (1 - y_{i}) \log \left(1 - h(\boldsymbol{x}_{i}) \right) \\ &= \min_{\boldsymbol{w}} \sum_{i} -y_{i} \log \left(\frac{1}{1 + e^{-\boldsymbol{x}\boldsymbol{w}}} \right) - (1 - y_{i}) \log \left(\frac{e^{-\boldsymbol{x}\boldsymbol{w}}}{1 + e^{-\boldsymbol{x}\boldsymbol{w}}} \right) \\ &= \min_{\boldsymbol{w}} \sum_{i} -y_{i} \boldsymbol{x} \boldsymbol{w} + \log(1 + e^{\boldsymbol{x}\boldsymbol{w}}) \rightarrow \text{can't be solved analytically!} \end{split}$$

How can we minimize the loss function numerically?

 \rightarrow Common technique: Gradient descent

$$oldsymbol{w}_n
ightarrow oldsymbol{w}_{n+1} = oldsymbol{w}_n + lpha
abla \mathcal{L}(oldsymbol{w}_n)$$

learning rate $lpha$

close to minimum \rightarrow small gradient \rightarrow small weight updates

Sensitivity to learning rate

Learning rate is one of the most critical parameters to tune

https://www.jeremyjordan.me/nn-learning-rate/

 \rightarrow Try behaviour for different orders of magnitude eg. $10^{-1}\dots10^{-6}$

Result

Gradient descent for logistic regression:

$$abla_{oldsymbol{w}} - \log \mathcal{L}(oldsymbol{w})
onumber \ = \sum_{i} \left(y_i + rac{1}{1 + e^{-oldsymbol{x}_i oldsymbol{w}}}
ight) oldsymbol{x}_i$$

 \rightarrow See exercise

Evaluation

Receiver Operating Characteristic (ROC) curve:

	$h(\mathbf{x}) > D$	$h(\mathbf{x}) < D$	
top jet	true positive	false negative	TP + FN = 1
QCD jet	false positive	true negative	FP + TN = 1

top vs QCD jets

Instructions to access exercises

- (create a google account)
- 2 log in to your google account
- 3 https://colab.research.google.com/
- 4 a yellow window pops up \rightarrow select GitHub
- 5 search for 'abutter'
- 6 select exercise 'Linear Regression'
- select exercise 'Logistic Regression'