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Machine Learning seems to be everywhere

The triumph of AlexNet in 2012 triggered a ML wave!
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Why Machine Learning in particle physics?

LHC = BIG data

applications:
jet calibration

track reconstruction
calorimeter simulation
particle identification

event generation
...
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What is Machine Learning?
Formal definition

A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P

if its performance at tasks in T,
as measured by P,

improves with experience E.

Tom Michael Mitchell (1997)
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What is Machine Learning?
What it feels like (sometimes)

Aim of this lecture:
Giving you the tools for a systematic approach to use ML in particle

physics
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Can Machine Learning do anything?

A word of caution before we dive in

The core of machine learning is to find structure in data - no more no less.
Beware the data prior!
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How to become a ML expert?
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Luckily we are physicists :)

This lecture:
We will start with a simple problem and learn new things on a

need-to-know basis

The following lectures build on each other.
→If anything is unclear, please do not hesitate to ask!
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Can we predict the signal of a calorimeter?
Setting up a machine learning problem

Dataset (xi , yi )i=1,...,n

feature
(particle E, id, . . . )

label
(signal)

True function f : X → Y , f (xi ) = yi

Hypothesis h ∈ H : X → Y , f (xi ) = ỹi ← prediction

Loss:

LMSE =
1

n

n∑
i

(yi − ỹi )
2

(measure for goodness of approximation)

Learning: Minimization of the loss function
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Can we predict the signal of a calorimeter?

Univariate linear regression

Predict signal y as function of energy x

dependent variable regressor

Linear regression model:
ỹi = w1xi + w2

with model parameters wj

Find optimal linear model
→ depends on data and chosen loss function
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Optimizing a linear problem
Chosen loss: mean squared error

LMSE =
1

n

n∑
i

(yi − ỹi )
2

=
1

n

n∑
i

(
yi −

(
xi
1

)(
w1

w2

))2

with

(
xi
1

)
= x i ,

(
w1

w2

)
= w

Minimizing the loss

min
wj

LMSE → ∇wLMSE =
n∑

i=1

2 (yi − x iw) x i
!

= 0

→ (I.)
n∑

i=1

(yi − x iw) = 0 (II.)
n∑

i=1

(yi − x iw) xi = 0

w
n∑

i=1

x i =
n∑

i=1

yi Exercise

w2 = ȳ − w1x̄ w1 =?
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Optimizing a linear problem

Exact analytic solution:

w1 =

∑n
i=1 (yi − ȳ) (xi − x̄)∑n

i=1(xi − x̄)2

w2 = ȳ − w1x̄

Python/numpy warm up exercise:
→ Implement this problem (git)
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Multivariate linear regression

We can generalize our result to multidimensional feature vectors!
Adopting a more compact notation we write:

ỹ =


ỹ1

ỹ2

...
ỹn

 =


x11w1 + x12w2 + · · ·+ x1dwd

x21w1 + x22w2 + · · ·+ x2dwd

...
xn1w1 + xn2w2 + · · ·+ xndwd

 = Xw

Minimizing the loss yields

∇w ||y − Xw ||2 =
n∑

i=1

2 (y − Xw) X !
= 0

→ w = (XTX )−1XTy
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Classification vs Regression

cats vs dogs
particle identification

top vs QCD jets
. . . ?

smartphone price
jet energy scale

amplitude
. . . ?
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Can we predict the type of a jet
Setting up a classification problem

Dataset (x i , yi )i=1,...,n

feature
(nparticles ,mj , ...)

label
(0/1→ QCD/top)

Hypothesis:
h(x i ) = ỹi ∈ [0, 1]← prediction

Interpretation:
h(x i ) = P(yi = 1|x i )← probability

Minimize probability that h assigns wrong class.
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How to build a loss function for classification

If h(x i ) = P(yi = 1|x i ) then → P(yi = 0|x i ) = 1− h(x i )

Maximize the likelihood:

L =
∏

x i |yi=1

P(yi = 1|x i )
∏

x i |yi=0

P(yi = 0|x i )

=
∏
i

h(x i )
yi (1− h(x i ))1−yi

min
h
− logL = min

h

∑
i

− log (h(x i )) · yi− log (1− h(x i )) · (1− yi )

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4
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Choosing a suitable model
Problem: 0 < h(x i ) < 1→ naive linear model not suitable

Use sigmoid function instead:

→ h(x) = σ(xw)

=
1

1 + e−xw
4 2 0 2 4

x

0.0

0.5

1.0

(x
)

Insert our model into the loss function:

min
h
− logL = min

h

∑
i

−yi log (h(x i ))− (1− yi ) log (1− h(x i ))

= min
w

∑
i

−yi log

(
1

1 + e−xw

)
− (1− yi ) log

(
e−xw

1 + e−xw

)
= min

w

∑
i

−yixw + log(1 + exw )→ can’t be solved analytically!
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How can we minimize the loss function numerically?

→ Common technique: Gradient descent

wn → wn+1 = wn + α∇L(wn)

learning rate α

close to minimum → small gradient → small weight updates
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Sensitivity to learning rate

Learning rate is one of the most critical parameters to tune

https://www.jeremyjordan.me/nn-learning-rate/

→ Try behaviour for different orders of magnitude eg. 10−1 . . . 10−6
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Result

Gradient descent for
logistic regression:

∇w − logL(w)

=
∑
i

(
yi +

1

1 + e−x iw

)
x i

→ See exercise

0.2 0.4 0.6 0.8

Probability
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Evaluation

Receiver Operating Characteristic (ROC) curve:

h(x) > D h(x) < D
top jet true positive false negative TP + FN = 1

QCD jet false positive true negative FP + TN = 1

Signal efficiency εS
∼ true positive
→ maximize

Background rejection
1

εB
∼ true negative
→ maximize

top vs QCD jets
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Instructions to access exercises

1 (create a google account)

2 log in to your google account

3 https://colab.research.google.com/

4 a yellow window pops up → select GitHub

5 search for ’abutter’

6 select exercise ’Linear Regression’

7 select exercise ’Logistic Regression’
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