Beyond the Standard Model Part I

Kwang Sik JEONG

Pusan National University, Korea

26th Vietnam School of Physics

Nov 30 – Dec 11, 2020

Lectures on BSM

- Why BSM?
- Axionic Extension
- **o** Supersymmetric Extension

Lecture on SM by Cao Hoang Nam

Standard Model Theoretical Description of Nature

Standard Model of Particle Physics

- Successful at energy scales below TeV
 - 3 gauge symmetries: electromagnetic, weak, strong forces
 - 2 accidental global symmetries: B and L number stable proton, massless neutrinos
 - So far, all the collider measurements are in good agreement with SM predictions

- Quantum Field Theory
 - Framework to describe elementary particles and their interactions
 - Theory: Action + Regularization + Renormalization

divergence in loop diagrams

• Symmetry: $\Delta S = (path-independent)$

 $\langle \text{final}|\text{initial} \rangle = \int DA_{\mu} D\phi \overline{\psi} \overline{\psi} \psi e^{iS[A_{\mu},\phi,\overline{\psi},\psi]}$

- Poincare symmetry: mass, spin
- Internal symmetry: charge

Symmetry breaking

- Spontaneous breaking: the ground state is not symmetric
- Anomaly: Breaking by quantum effects

due to fermions with chiral symmetry coupled to gauge fields

total derivative \rightarrow relevant nonperturbatively e.g. B + L is anomalous under electroweak

gauge anomaly $\not \rightarrow$ unitarity and renormalizability

Physical objects from fields

Point-like particles elementary excitations

Small linear perturbations of fields around the ground state

Solitons

Solution of the classical field equation $\delta S = 0$

- Lumps of fields of finite size
- Similar to particles, but without quantization
- Existence and stability due to non-linearity of the field eqs e.g. magnetic monopole, domain wall, cosmic string, ...

(size)
$$\sim \frac{1}{m}$$

(energy) $\sim \frac{m}{g}$

Instantons

Localized, finite-action solution of the Euclidean field eqs

• Wick rotation $it \rightarrow \tau$

$$S = \int dt \left(\frac{1}{2}m\left(\frac{dq}{dt}\right)^2 - V(q)\right) \rightarrow iS_E = \int d\tau \left(\frac{1}{2}m\left(\frac{dq}{d\tau}\right)^2 + V(q)\right)$$

- Tunneling between quantum systems
- Decay of a false vacuum by bubble nucleation

Sphalerons

Static, unstable, and finite-energy solution of the classical field eqs

- Classical transition between vacua
- Possible at high energy scales

Non-Abelian gauge theory: topologically non-trivial vacuum structure with an infinite number of

ground states Chern-Simons number

Instantons \rightarrow anomaly has physical effects

SM as Low Energy Effective Theory

UV theory with renormalizable local operators

$$L = L_H(\phi_H, \phi_L) + L(\phi_L)$$

where $\phi_H(\phi_L)$ are fields describing heavy (light) particles above (below) Λ

- Effective theory of light fields
 - Obtained by integrating out heavy fields: $\int D\phi_H D\phi_L e^{iS[\phi_H,\phi_L]}$
 - Below the cutoff scale Λ

$$L_{\rm eff} = L(\phi_L) + \sum_{n,i} \frac{c_i^{(n)}}{\Lambda^{n-4}} O_i^{(n)}(\phi_L)$$

Dimensionless Wilson coefficients $c_i^{(n)}$

- Effects of heavy particles and high energy modes

- Effective theory of light fields
 - Contribution of the local operator $O_i^{(n)}$ to a process at energy scale $E \ll \Lambda$

 $C_{i}^{(n)} \left(\frac{E}{\Lambda}\right)^{n-4} \qquad \begin{array}{l} n < 4: \text{ relevant} \\ n = 4: \text{ marginal} \\ n > 4: \text{ irrelevant (non-renormalizable)} \end{array}$

• Matching adjustment of coefficients

Same physical predictions at low energy scales

 $\lambda_{\text{eff}}(\mu) = \lambda_{\text{full}}(\mu) + \text{(threshold corrections)}$

e.g.

- For a case of strongly coupled theory
 - Effective theory of relevant degrees of freedom e.g. hadrons in QCD

Why Beyond the SM? Experimental Evidences

Physics beyond the Standard Model

Experimental evidences

- Neutrino Masses and Mixing
 - Neutrino oscillation experiments
 - Weak eigenstate = mixture of mass eigenstates

e_i				
ι	parameter	best fit $\pm 1\sigma$	2σ	3σ
sign of from matter effects \rightarrow	$\Delta m_{21}^2 \left[10^{-5} \mathrm{eV}^2 \right]$	$7.59_{-0.18}^{+0.20}$	7.24 - 7.99	7.09-8.19
	$\Delta m_{31}^2 [10^{-3} {\rm eV}^2]$	$\begin{array}{c} 2.45 \pm 0.09 \\ -(2.34 \substack{+0.10 \\ -0.09}) \end{array}$	2.28 - 2.64 - (2.17 - 2.54)	2.18 - 2.73 - (2.08 - 2.64)
	$\sin^2 \theta_{12}$	$0.312\substack{+0.017\\-0.015}$	0.28 - 0.35	0.27 - 0.36
	$\sin^2 \theta_{23}$	0.51 ± 0.06 0.52 ± 0.06	0.41-0.61 0.42-0.61	0.39–0.64
	$\sin^2 \theta_{13}$	$\begin{array}{c} 0.010\substack{+0.009\\-0.006}\\ 0.013\substack{+0.009\\-0.007}\end{array}$	$ \leq 0.027 \\ \leq 0.031 $	$ \leq 0.035 \\ \leq 0.039 $

Cosmological observations

 $\sum m_{
u} < 0.1 \,\,\mathrm{eV}$

Neutrinos are massless in the SM

• Neutrino Masses and Mixing

How to generate tiny neutrino masses?

- Majorana $v = \overline{v} \ (\Delta L = 2)$
 - Seesaw mechanism: $L = y \overline{\ell}_L \widetilde{H} \nu_R + \frac{1}{2} M_R \overline{\nu_R} \nu_R^c \rightarrow L_{eff} = \frac{y^2}{M_R} (\overline{\ell}_L \widetilde{H}) (\widetilde{H}^T \ell^c)$

• Dirac
$$\nu \neq \bar{\nu} \ (\Delta L = 0)$$

- Tiny Yukawa coupling: $L = y \ \overline{\ell}_L \widetilde{H} \nu_R \rightarrow m_\nu = y \langle H \rangle \sim 0.1 \text{eV}$

 $\beta\beta0\nu$ to test Majorana nature of neutrino:

- Lecture on DM by Kakizaki
- Dark Matter

Non-baryonic cold dark matter

- Observed motions of stars and galaxies
- Mass distribution measured with gravitational lensing

Rotation curve of galaxy

Bullet cluster: gravitional lensing + X-ray

No candidate for cold dark matter in the SM

- Dark Matter
 - Various models in a broad range of masses
 - Stability + Production mechanism
 - Active researches on dark matter detection strategy

Dwarf galaxies

- Bosonic: de Broglie wavelength < kpc \Rightarrow heavier than 10^{-22} eV
- Fermionic: phase space density limit by Pauli exclusion principle ⇒ heavier than about keV
- If once thermalized: structure formation \Rightarrow heavier than keV

- Baryon Asymmetry
 - Non-observation of gamma ray burst from matter-antimatter annihilation

- Big Bang Nucleosynthesis: abundance of light elements
- Cosmic Microwave Background: sound speed of baryon-photon fluid

Sakharov conditions in CPT conserving background

 ◆ Baryogenesis requires B violation, C and CP violation, and B violating interactions out of thermal equilibrium ← Not enough in the SM

- Baryon Asymmetry
 - Electroweak phase transition: (free potential) = V +(thermal effects)

- Last period affecting baryon asymmetry

B + L violation by rapid EW sphaleron transition in symmetric phase

- Baryogenesis scenarios
 - B L generation above the weak scale: Leptogenesis, Affleck-Dine, ...
 - B + L generation at the weak scale and rapid sphaleron decoupling:

Electroweak baryogenesis c.f. electron EDM bound from ACME II

power spectrum of density perturbation $\log_k P_{\rho}(k) \sim 1$

Cosmological Inflation

Exponential expansion & reheating in the early universe for the standard hot Big Bang model

- Homogeneous and isotropic universe on large scales
- Nearly scale-invariant, Gaussian density perturbations

Difficult to implement inflation in the SM

- Cosmological Inflation
 - Slow-roll inflation

- Inflation during slow-roll era with $\epsilon \ll 1$ and $|\eta| \ll 1$

$$\epsilon \equiv \frac{1}{2} M_{Pl}^2 \left(\frac{V'}{V} \right)^2, \qquad \eta \equiv M_{Pl}^2 \frac{V''}{V}$$

 Coherent oscillations of inflaton to convert energy to SM particles → Reheating

• Planck constraints

- Content of the universe
 - Baryon acoustic oscillations: power spectrum of galaxy fluctuations
 - Large scale structures: 21cm, Lyα, CMB lensing, galaxy clustering, ...

Lyman α transition of HI

hyperfine transition of HI

• Supernovae probe of the cosmological expansion

Why Beyond the SM? Theoretical Puzzles

Standard Model Lagrangian

$$-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \left|D_{\mu}H\right|^{2} - V(H) + i\overline{\psi}\sigma^{\mu}D_{\mu}\psi + y_{ij}H\psi_{i}\psi_{j}$$

Gauge sector

Higgs sector

Fermion sector

Standard Model of Elementary Particles

Physics beyond the Standard Model

Theoretical Puzzles

- Quantum Gravity
 - General relativity
 - gravity = spacetime curvature

quantized

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi T_{\mu\nu}$$

- Gravitational force becomes comparable to other forces at

Planck scale: $M_{Pl} = 2.4 \times 10^{18} \text{GeV}$

• Not renormalizable in QFT \rightarrow String theory (?)

- Gauge Sector
 - SU(3)×SU(2)×U(1) for QCD and EW force
 - Grand Unification
 - Hint from renormalization group flow
 - Charge quantization (magnetic monopole)

c.f. from anomaly cancellation? but scalars, Dirac fermions

• Models: SU(5), SO(10), E₆, ...

- Proton decay by *B* and *L* violation mediated by heavy gauge bosons Unification scale: $M_{GUT} \sim 10^{16} \text{GeV}$

- Higgs Sector
 - Scalar potential

$$V = -\mu^2 |H|^2 + \lambda |H|^4$$

the only mass parameter in the SM

where v = 246 GeV and $m_h = 125 \text{GeV}$

⇒ $\mu \simeq 88$ GeV and $\lambda \simeq 0.13$ at the weak scale c.f. QCD scale: natural due to log running of α_3

• Vacuum stability: new physics at $M_{\lambda=0} \sim 10^{9-12} \text{GeV}$?

KS JEONG @ PNU

Non-perturbativity

200

- Higgs Sector
 - Radiative correction to the Higgs mass squared parameter μ^2

- EW hierarchy problem: sensitive to unknown UV physics

How to stabilize the weak scale?

Higgs Sector

Particle zoo

- Unnatural without new physics around TeV
 - EW naturalness has been considered as a guiding principle to BSM

©NewScientist

- Interesting ideas:

Particles are divided into two families called bosons and fermions. Among them are groups known as leptons, quarks and force-carrying particles like the photon. Supersymmetry doubles the number of particles, giving each fermion a massive boson

Supersymmetry, Extra dimensions, Strong EWSB, ...

Island Universes in Warped Space-Time

(often) WIMP as cold dark matter if realized around TeV

- Higgs Sector
 - Supersymmetry
 - Unique extension of the Poincare spacetime symmetry
 - Symmetry between boson and fermion
 - Weak scale SUSY superpartner particles around the weak scale
 - Natural solution to gauge hierarchy problem
 - Gauge coupling unification
 - WIMP dark matter: Lightest superparticle
 - Explanation of how EWSB occurs
 - Higgs quartic from gauge couplings
 - Local SUSY \rightarrow Graviton

- Higgs Sector
 - LHC results so far
 - No significant deviations from the SM
 - No clear signals for BSM
 - Direct & indirect dark matter searches so far
 - No evidence of WIMP
 - New approach

Cosmological relaxation of the Higgs boson mass

- $\mu^2 = \mu^2(\phi)$: selection by slow-rolling relaxion

- Fermion Sector
 - Quarks and leptons
 - Mass hierarchy

- Weak eigenstate = mixture of mass eigenstates
 - CKM matrix for quarks, PMNS matrix for leptons

Flavor mixing and CP violation in charged weak current interactions

Quark	Lepton	
$ \mathbf{U}_{CKM} \simeq \begin{pmatrix} 1 & 0.2 & 0.005 \\ 0.2 & 1 & 0.04 \\ 0.005 & 0.04 & 1 \end{pmatrix}$	$ \mathbf{U}_{\rm PMNS} \simeq \begin{pmatrix} 0.8 & 0.5 & 0.15 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$	
3 small angles	2 large angles and 1 small angle	
CP phase: $\delta_{CKM} \simeq 1$	CP phase: $\delta \simeq -\frac{\pi}{2}$ (?)	

- Fermion Sector
 - Quark sector

Why small mixing and hierarchical mass structure?

- Continuous family symmetry spontaneously broken by flavon ϕ

e.g. Froggatt-Nielson mechanism

$$\rightarrow$$
 Dynamical Yukawa couplings: $y_{ij} = \lambda_{ij} \left(\frac{\phi}{\Lambda}\right)^{n_{ij}}$ with $\lambda_{ij} = O(1)$

• Lepton sector

Why one small and two large mixing angles?

Different from the quark sector

- Fine-tuning? Non-Abelian discrete symmetries?
- Seesaw + Froggatt-Nielson?

- Fermion Sector
 - GIM mechanism

No flavor-changing neutral current at tree-level in the SM (GIM)

 \rightarrow Strong constraints on flavor and CP violations in BSM models

- Fermion Sector
 - CP violating phases in the QCD sector
 - $\delta_{\text{CKM}} \sim \arg(\det[y_u y_u^+, y_d y_d^+]) \simeq 1.2 \pm 0.3$
 - $\bar{\theta} = \theta + \arg(\det[y_u y_d]) \leftarrow$ Physical if quarks are massive

topological QCD θ -term: $\Delta L = \frac{\theta}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}$

energy of θ -vacuum due to instantons

c.f. θ -term of SU(2) \rightarrow Rotated away by U(1)_{B+L} transformation

- Smallness of electric dipole moments
 - Neutron EDM bound

- Fermion Sector
 - Strong CP problem: How to make QCD CP-conserving?
 - Peccei-Quinn solution

Promote to $\bar{\theta}$ a field, axion, anomalous coupled to gluons

$$\frac{1}{32\pi^2}\frac{a}{f_a}G_{\mu\nu}\tilde{G}^{\mu\nu}$$

Properties of the axion determined by the decay constant f_a

• Axion potential from QCD instantons after the QCD phase transition

- Fermion Sector
 - Axion properties

- Axion is cosmologically stable for large $f_a \rightarrow$ Dark matter candidate

Extension of the SM BSM Models

1-4. BSM

- Extension of the SM
 - SM
 - Not a complete description of nature
 - Experimental results: only small deviations from the SM below TeV
 - How to extend the SM? renormalizable interactions

1-4. BSM

- Extension of the SM
 - Heavy particles with sizable coupling to the SM
 - Supersymmetry, extra dimensions, hidden strong forces, ...
 - Constraints from collider searches for new particles, dark matter searches

- d = 5: only one operator without counting flavors
- d = 6: 64 independent operators

1-4. BSM

- Extension of the SM
 - Light particles feebly coupled to the SM
 - Portal framework: Interaction between SM and Dark sectors

Dark Higgs	Sterile Neutrino	Dark Photon	Axion
$\lambda S^2 H^{\dagger} H$	yLH <mark>N</mark>	$\epsilon F'_{\mu\nu}B^{\mu\nu}$	$rac{oldsymbol{\phi}}{f}F_{\mu u} ilde{F}^{\mu u}$

- Solution to SM puzzles
- Cosmological importance

Part II and III BSM

1-5. BSM Models

- Two BSM scenarios
 - Axionic Extension
 - Light scalar particles feebly coupled to the SM
 - Light scalar from continuous shift symmetry
 - Supersymmetric Extension
 - Heavy particles above the weak scale with sizable coupling to the SM
 - Supersymmetry to remove the UV sensitivity of scalar fields

Let's discuss how to resolve the puzzles of the SM within those scenarios!