Dark Matter (Kakizaki) - Exercises

1. Consider a particle moving in a central potential

$$
\begin{equation*}
V=k r^{n}, \tag{1}
\end{equation*}
$$

where k is a constant parameter. Show that the virial theorem reduces to

$$
\begin{equation*}
\langle T\rangle=\frac{n}{2}\langle V\rangle . \tag{2}
\end{equation*}
$$

Hint: Consider the time derivative of the scalar product of the momentum and position vectors,

$$
\begin{equation*}
G \equiv \boldsymbol{p} \cdot \boldsymbol{r} \tag{3}
\end{equation*}
$$

2. The bending angle of photons passing by a point mass M at a distance of closest approach b is given by

$$
\begin{equation*}
\alpha=\frac{4 G M}{b} . \tag{4}
\end{equation*}
$$

Show that in general the observer observes two images of the source of light with angles,

$$
\begin{equation*}
\theta_{1}=\frac{1}{2}\left(\theta_{S} \pm \sqrt{\theta_{S}^{2}+4 \theta_{E}^{2}}\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{E}=\sqrt{\frac{4 G M D_{\mathrm{LS}}}{D_{S} D_{L}}} \tag{6}
\end{equation*}
$$

