Introduction to QCD

Le Duc Ninh

ICISE, Quy Nhon, Vietnam

VSOP-26, Quy Nhon, Vietnam, Dec 2020

ı

Outline

- History of QCD
- QCD Lagrangian (Black board)
- Feynman rules (Black board)
- Cross section (Black board)
- Quantum corrections: UV and IR divergences (Black board)
- **.**..

Why are nuclei stable?

Source: foronuclear.org

- electromagnetic interaction
- strong nuclear interaction

3

Strong nuclear interaction

▶ PHOTON is the messenger of electromagnetic interaction

Source: researchgate.net

▶ Messenger of the strong interaction between nucleons?

Source: Wikipedia

How many pions?

 $\to \pi^0, \pi^{\pm}$:

Source: cronodon.com

▶ Pions, proton, neutron are fundamental?

Periodic table of particles

▶ 1940-1960: many mesons and new baryons were discovered. They are very similar to nucleons and pions.

Source: sciencephoto.com

Periodic table of particles !

A simple idea

Gell-Mann and Zweig (1964):

All those hundreds of hadrons are made up of 3 quarks: u, d, s.

Source: Wikipedia

$$Arr Q_U = +2/3$$
, $Q_d = Q_s = -1/3$ with Spin = 1/2.

7

Colour

Consider e.g. the Δ^{++} resonance:

$$|\Delta^{++}, J_3 = 3/2 \rangle = |u\uparrow, u\uparrow, u\uparrow\rangle, \tag{1}$$

which contradicts Fermi-Dirac statistics.

Solution [Han and Nambu 1965]:

$$|\Delta^{++}, J_3 = 3/2 \rangle = \epsilon_{ijk} |u^i \uparrow, u^j \uparrow, u^k \uparrow \rangle, \tag{2}$$

where i, j, k = 1, 2, 3 are color indices.

Quarks exist in different color states, but hadrons are colorless.

3

Invariance

Lorentz transformation: $(t, x, y, z) \rightarrow (t', x', y', z')$

$$s^2 = s^{\mu} s_{\mu} = t^2 - x^2 - y^2 - z^2 \tag{3}$$

Color transformation: $(a, b, c) \rightarrow (a', b', c')$

meson =
$$\frac{1}{\sqrt{3}} \delta_{ij} q^i \bar{q}^j = \frac{1}{\sqrt{3}} (q^1 \bar{q}^1 + q^2 \bar{q}^2 + q^3 \bar{q}^3),$$
 (4)
baryon = $\frac{1}{\sqrt{6}} \epsilon_{ijk} q^i q^j q^k$
= $\frac{1}{\sqrt{6}} [q^1 q^2 q^3 - q^1 q^3 q^2 - q^2 q^1 q^3 + q^2 q^3 q^1 + q^3 q^1 q^2 - q^3 q^2 q^1]$ (5)

→ many ways to create colorless states (color singlets)!

All hadron states and physical observables are color singlets.

Color confinement

Color confinement

Color confinement

[Source: http://www.quantumdiaries.org]

Group and representation

See C.H. Nam's lecture.

SU(3) group

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \xrightarrow{U_{\alpha}} \psi' = \begin{pmatrix} \psi'_1 \\ \psi'_2 \\ \psi'_3 \end{pmatrix}, \ U_{\alpha} = \exp\left(i \sum_{a=1}^8 T_a \alpha_a\right), \ T_a = \lambda_a/2, \tag{6}$$

Gell-Mann matrices:

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

$$\lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

 $G = \{U_{\alpha}\}$ is called the SU(3) group of unitary matrices.

If U_{α} are $d \times d$ matrices $\rightsquigarrow d$ representation (d = 3, 8, 10, ...).

All representations: $[T_a^{(d)}, T_b^{(d)}] = if_{abc}T_c^{(d)}, a, b, c = 1, \dots, 8.$

 f_{abc} : real and totally anti-symmetric.

$SU(3)_F$ vs. $SU(3)_C$

 $SU(3)_F$: flavor space

$$\psi = \begin{pmatrix} u \\ d \\ s \end{pmatrix} \tag{7}$$

 \rightarrow explanation of periodic tables of hadrons (octet and decuplet representations).

 $SU(3)_C$: color space

$$q = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix} \tag{8}$$

 \rightarrow hadrons are colorless ($SU(3)_C$ singlets). Interaction between quarks is the origin of the strong nuclear force!

MODELS of the proton

"... the imagination of nature is far, far greater than the imagination of man."

- Richard Feynman -

[Source: quantumdiaries.org, fineartamerica.com, physicstoday.scitation.org]

- Feynman (1969): hadrons are made of point-like constituents, termed partons.
- ▶ Bjorken scaling: *ep* scattering at high energies → partons behave as independent particles.

Partons = (quarks, gluons).

Gluons = messengers of the strong interaction between quarks.

Next steps

- Quantum chromodynamics (QCD): quantum field theory of quarks and gluons (Lagrangian, perturbative approach)
- From quarks and gluons to hadrons
- \longrightarrow Black board!

References

- ► Foundations of Quantum Chromodynamics; T. Muta; (3rd edition), World Scientific (2010).
- QCD and Collider Physics; Ellis, Stirling and Webber; Cambridge University Press (1996).
- Übungen zu Strahlungskorrekturen in Eichtheorien (in German); Matthias Steinhauser; Lecture at Maria Laach school 2003. [google: "Steinhauser Maria Laach"].
- QED, QCD en pratique (in French); Aurenche, Guillet, Pilon; Lecture note (2018). Download: https://cel.archives-ouvertes.fr/cel-01440544v2
- Introduction to Quantum Chromodynamics and Loop Calculations; Gudrun Heinrich; Lecture note for VSOP-24 (2018). Download: https://indico.in2p3.fr/event/16354/overview
- Z → bb̄ at next-to-leading order in QCD (in Vietnamese); Bachelor thesis (2014); Nguyen Hoang Dai Nghia.
 UV and IR divergences, one-loop and phase-space integrals in D dimensions.
 Download: https://ifirse.icise.vn/theses/
- eμ → eμ scattering at one-loop level in QED; Bachelor thesis (2020); Le Duc Truyen.
 UV and IR divergences, renormalization, mass regularization, soft-photon corrections. Download: https://ifirse.icise.vn/theses/