Proposal for an Erasmus Mundus Joint Master Degree (EMJMD) program "European Master of Particle Physics"

University of Bologna

University of Clermont Auvergne

TU Dortmund University

Preface

- Will show a reminder of the program
- Includes changes discussed during the last discussion
- Includes changes based on a discussion with the DAAD (national contact for Erasmus)

Aims

- Installation of an EMJMD program in Particle Physics
- The program will take two years and correspond to 120 ECTS credits
- Degree:
 - one joint degree certificate (optimal case) → POSSIBLE?
 - Multiple degree (possible)
- Subjects:
 - Basic and advanced studies of particle physics
 - Analysis and interpretation of high-energy physics data
 - Detector development for particle physics experiments
 - Phenomenology of high-energy physics processes

Consortium

- Applicant/Coordinator: TU Dortmund University
- Partners:
 - University of Bologna
 - University of Clermont Auvergne
- Associated partners:
 - DESY (positive) Nikhef (positive)
 - IN2P3

• INFN

- Max-Planck-Institute for Physics (positive)
- CERN (positive)
- \rightarrow We need partners across the world (2 3 per continent)

→We need industrial partners (fewer)

Tasks of the associated partners

- Internships or summer student programs
- Supervision of Master theses
- Source of guest lecturers
- Dissemination of the program and research/education of Europe in general
- Participation in a "steering committee"

Duration

- One preparatory year. Optional, but probably very useful
- Four consecutive intakes of two academic years each, i.e. five years of study
- Six years in total
- Unless no other sources of funding are found, the program is not renewable

Participants

- Erasmus funds 60 student scholarships for the whole duration, i.e. 15 per intake on average
- Erasmus funds up to 28 additional students if they come from targeted regions
- Allow additional students if they find private or other sources of funding

Funding

- Management/guess lecturers:
 - 20,000 Euro (preparatory year)
 - 50,000 Euro (per intake)
 - This can be turned into a position at TU Dortmund University (positive signs that the position will be co-financed by the university)
- Erasmus scholarships range between 23,000 Euros and 50,000 per student (for the two years)

Academic schedule and mobility

- Students need to move to at least two countries other than their own
- Our program fixes the mobility schedule:
 - Semester 1 (winter term): Bologna
 - Semester 2 (summer term): Dortmund
 - Semester 3 (winter term): Clermont
 - Semester 4 (summer term): any (associated) partner

Academic schedule (proposal)

- Year 1:
 - Orientation week in Bologna (one week before semester start?)
 - First (winter) semester in **Bologna**; course work according to 30 ECTS credits
 - March/April: BCD summer school (Cargese?) → Mix with students from previous intake; can include guest lecturers; ECTS credits?
 - Second (summer) semester in **Dortmund**; course work according to 30 ECTS credits
 - July September: Optional internship at DESY or CERN ("summer student program"), at another research laboratory or at a company

Academic schedule (proposal)

- Year 2:
 - Third (winter) semester: **Clermont**; course work corresponding to 12 ECTS credits; internship or preparatory phase for Master thesis corresponding to 18 ECTS credits; may include an excursion to CERN (?)
 - Highlight: trade fair for Master theses, all (associated) partners present their institution
 - March/April: BCD summer school (Cargese?) → Mix with students from next intake; can include guest lecturers; ECTS credits?
 - Fourth (summer) semester: Bologna, Clermont, Dortmund or associated/affiliated partners; Master thesis corresponding to 30 ECTS credits

Complementarity through specialization

- Need to argue that the three HEI cover complementary aspects and that there is an added value to the joint degree.
- Suggest the following specializations per HEI:
 - Statistical methods: Data analysis, statistics, machine learning
 - **Computing:** Grid computing, programming
 - **Research & development**: Detector development, electronics, accelerators
 - Particle physics: Flavor and BSM physics, top-quark physics, QCD, theory
- Have two majors per HEI, particle physics and one specialization
 - Bologna: Particle physics, computing
 - **Clermont**: Particle physics, statistical methods
 - **Dortmund**: Particle physics, research & development
- Should be reflected in courses and research
- Also: should include spin-off and value for society

Credit composition

- Strive for broad education in particle physics, distribute the 120 credits accordingly
- Courses: 66 ECTS credits, including
 - Introductory particle physics lecture: 6 credits
 - Advanced courses: at least 54 credits, with at least
 - 3 (6 max.) credits from seminars
 - 6 (12 max.) credits from theory lectures
 - 6 (12 max.) credits from lab courses
 - 6 (12 max.) credits from computing
 - Secondary/applied subjects: 6 (12 max.) credits
- Summer schools/programs: 6 credits
- Internship/thesis preparation: 18 credits
- Master thesis: 30 credits

Courses offered

Semester Location Courses	1 Bologna Course	Туре	СР	2 Dortmund Course	Туре	СР	3 Clermont Course	Туре	СР
	Lectures, seminars and lab courses (major): Particle physics Introduction to Particle Physics	Lecture	6	Particle physics Flavor physics in experiment and theory	Lecture	6	Particle physics Symmetries Introduction to Particle Physics	Lecture	6
	Flavour Physics Quantum Field Theory 1	Lecture Lecture	6 6	Quantum field theory Reading course on particle physics topics Physics beyond the Standard model	Lecture Seminar Seminar	6 3 3	Quantum Field Theory and QCD Electroweak scale	Lecture Lecture	6 6
	Lectures, seminars and lab courses (minor): Computing			Research and development			Statistical methods		
				Experimental aspects of particle physics Detector systems in particle and medical physics Particle physics lab course Electronics lab course Advanced Accelerator physics (in German, includin	Lecture Seminar Lab Lab g Lecture	6 3 6 6	Advanced Statistics, Machine Learning Programming, Data Mining	Lab Lab	6 6
	Lecture and seminars (general) Statistical and Data Analysis For Nuclear and Subnuclear Physics Laboratory of data acquisition and data processing Advanced detector for high energy physics Guest lecture	Lecture Lab Lecture Lecture	6 6 6 3 or 6	Applied machine learning for physicists Advanced statistical methods (tbd) Guest lecture	Seminar Lecture Lecture	3 3 3 or 6	Detectors and instrumental project Guest lecture	Lab Lecture	6 3 or 6
	Secondary subjects: General Relativity Urses on spin-off urses on transversal competences	Lecture	6	Astroparticle physics General relativity Cosmology Neutrinos und Kosmologie	Lecture Lecture Lecture Seminar	3 6 3 3	General relativity, Cosmology	Lecture	6

Master thesis and preparation:

18

Points of discussion

- General:
 - Potential partners (academic and industrial)?
- For each university:
 - Is a joint degree possible for your university?
 - What are the tuition fees for european/non-european students?
 - How does the program fit into your internationalization strategy?