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Is CMB “the” CMB?

• CMB is a snapshot of the universe at z 
1100.... plus something else

• Contamination by astrophysical  
objects and galactic foregrounds  

• Imprint of large scale structures:

• (weak) Gravitational lensing

• Sunyaev-Zeldovich (SZ) effect
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10 G. E. Addison et al.

Figure 4. Comparison of power spectra of primary and secondary CMB temperature anisotropies and foregrounds at 150 GHz. The
data points are the latest SPT (Reichardt et al. 2011; R12) and ACT (Das et al. 2011) measurements; we simply overplot the various
power spectrum components here rather than performing a fit to these data. The CIB clustering power was reproduced from the
model of Xia et al. (2011; X12), as described in Section 3.1. The tSZ power spectrum was obtained from the model described in
Efstathiou & Migliaccio (2012; EM12), fixed to have ℓ(ℓ+ 1)CtSZ

ℓ /2π|ℓ=3000 = 4 µK2 (see Section 3.2), and the tSZ×CIB power, which
is negative at 150 GHz, was calculated by combining the X12 and EM12 models, as described in Sections 2 and 3. We show the kSZ
power calculated in Sehgal et al. (2010). Radio and CIB point source shot noise levels were taken from R12 and X12 respectively (the
ACT data points have been corrected to account for the difference in radio source shot noise levels due to more sources being masked
by SPT). The primary lensed CMB power was calculated assuming a standard ΛCDM cosmology consistent with WMAP constraints
(Komatsu et al. 2011).

bulk electron motion in galaxy clusters and the intergalactic medium but assumes instantaneous reionization; including the
effect of patchy reionization would increase this signal. Since the tSZ×CIB power is negative for the principal CMB channels

of ACT, SPT and Planck, we would expect uncertainty in the tSZ×CIB power to degrade constraints on the upper limit of

the kSZ.

In principle, the tSZ×CIB and kSZ components could be separated on the basis of their frequency dependence, however,

we find that the frequency dependence is actually very similar across much of the frequency range probed by ACT and SPT.

Figure 5 shows the frequency dependence of the tSZ, clustered CIB, tSZ×CIB and kSZ power. The tSZ and clustered CIB
power are – individually – easily distinguishable from a blackbody, however the tSZ×CIB closely resembles a blackbody

(horizontal line) for ν < 200 GHz. This will further worsen kSZ constraints, and indeed R12 find that the kSZ upper limit

is increased by more than a factor of two when the tSZ×CIB correlation is allowed, despite using data from all three SPT
channels.

To assist in the analysis of small-scale CMB data, we have made the tSZ×CIB curve from Figure 4 available to download1.

1 http://www.physics.ox.ac.uk/users/AddisonG/

Addison et al. 2012
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• High-significance measurements, precision cosmological probe after Planck

• Milestone: CMB polarization dominates the sensitivity (starting this year)

CMB lensing state of the art 2019
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Planck Collaboration: Planck 2018 lensing

Fig. 12. Comparison of lensing maps constructed from the minimum-variance quadratic estimator alone (upper panel) and in com-
bination with the CIB, as traced by the 545-GHz GNILC frequency map (lower panel). The combination is performed on 60 % of the
sky, defined as the union of the lensing mask and the GNILC mask. Maps show the orthographic projection of the Wiener-filtered
displacement E mode, the scalar field with multipoles ↵̂LM =

p
L(L + 1)�̂LM , with 10  L  2000. The left and right panels are

centred on the north and south Galactic poles, respectively. While the two reconstruction maps are clearly strongly correlated, the
combined map has substantially more small-scale power, due to the higher S/N of the CIB on small scales.

35 % of the lensing can be removed using GNILC, with a mod-
erate improvement in combination with the Planck internal re-
construction. The Planck small-scale polarization data are noisy,
and at CMB E-mode scale ` ' 500, from where the large-scale
B-power takes significant contributions, the E-mode filter qual-
ity CEE

` /(C
EE
` + NEE

` /b
2
` ) (where b` is the combined beam and

pixel window function) is no greater than 0.6, so we cannot ex-
pect to remove more than about 20 % of the lensing B-mode
power. This is in contrast to current ground-based experiments,
for which the much lower polarization noise level makes the
lensing map fidelity the main limiting factor, as demonstrated
by Manzotti et al. (2017).
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Fig. 4.— Lensing convergence bandpowers estimated from SPTpol 500 deg2 field data. We show bandpowers from the MV, POL, and T
estimators. The POL and T bandpowers are shifted in L for clarity. The T and POL bandpowers are consistent with each other given the
errorbars of the bandpowers. The reconstruction noise of the POL estimator is lower than that of T for L . 600, and vice versa on smaller
angular scales. This provides a sense of the angular scales at which each estimator gives better S/N. The black solid line shows the lensing
convergence spectrum from the fiducial cosmology.

and with 10% uncertainty with the POL estimator. For
the T estimator, we measure the lensing amplitude with
12% uncertainty. Having chosen the same cuts in multi-
pole space for both the input temperature and polariza-
tion maps, this shows that the signal-to-noise per mode
in the input polarization maps are now high enough that
the POL estimators give more stringent measurements
of the lensing amplitude than the T estimator. In fu-
ture analyses, the T lensing spectrum is sample-variance
limited and cannot be improved by lowering the tem-
perature map noise levels. Instead, it can be improved
by including information from higher multipoles and/or
more sky area. However, lowering the noise levels of the
polarization maps can still improve the lensing measure-
ment from polarization estimators. Specifically, unlike

the temperature estimator, the N (0)
L

of the EB estima-
tor is not limited by unlensed power in the map, because
there is little unlensed B mode power to contribute to

N (0)
L

in the multipole range important for lensing recon-
struction. In addition to surpassing the measurement
uncertainty of the T lensing amplitude, considering sta-
tistical uncertainties alone, our POL lensing amplitude is
the most precise amplitude measurement (10.1 �) using
polarization data alone to date.

The systematic uncertainties for the MV and the POL
estimators are ⇠40% of their respective statistical uncer-
tainties, whereas the systematic uncertainty is subdomi-

nant for the T estimator compared to its statistical un-
certainty. For both the MV and the POL estimators, the
systematic uncertainty budget is dominated by the Pcal

uncertainty (Section 5.2). Including the systematic un-
certainties in the MV amplitude measurement, we mea-
sure AMV with 7% uncertainty.

We detect lensing at very high significance. From re-
constructing � using 400 unlensed simulations, the stan-
dard deviation of Aunl

MV is 0.024. The observed amplitude
of AMV = 0.944 would thus correspond to a 39 � fluctu-
ation.

Compared to other ground-based measurements, our
result has the tightest constraint on the lensing ampli-
tude. In Figure 5, we show our lensing power spectrum
measurement against previous measurements. Our mea-
surement is consistent with the measurement by Omori
et al. (2017). In that work, they reconstruct lens-
ing using a combined temperature map from SPT-SZ
and Planck over the common 2500 deg2 of sky. They
measure the lensing amplitude to be 0.95 ± 0.06 rela-
tive to the best-fit ⇤CDM model to the Planck 2015
plikHM TT lowTEB lensing dataset (same as the fiducial
cosmology used in this work). The most recent lensing
analysis of all-sky Planck data found the best-fit lens-
ing amplitude to be 1.011 ± 0.028 against the Planck

2018 TTTEEE lowE lensing cosmology (Planck Collabo-
ration et al. 2018b). To compare our measurement to this
model, we refit our minimum-variance bandpowers and

Wu et al. (2019)

Planck collaboration (2018)

ψ(θ) = − 2 ∫ χs

0
DA(χs − χ′�)

DA(χ′�)DA(χs)
Ψ(θ, χ′�)dχ′� β(θ, χs) = θ + ∇ψ(θ)
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Cross-correlation basis and examples
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DG with 2MPZ and Planck lensing 11
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Figure 8. DG forecasts for the LSST photometric galaxy survey cross-correlated with Planck (light red crosses), Simons
Observatory (purple triangles), and CMB-S4 lensing maps (black circles). Points are o↵set by �z = ±0.01 for visualization
purposes. The current 2MPZ measurement is shown as a dark blue star, while the yellow square points represent the DES
measurement from Giannantonio et al. (2016). The solid blue line represents the linear growth factor in the standard ⇤CDM
scenario, while the grey lines show D(z) for di↵erent dark energy/modified gravity models. Note that in this case we have not
applied the �

8

⌦
m

H2

0

rescaling as in Fig 4.

to recover the largest scales from ground observations,
up to a redshift dependent cuto↵ multipole given by
`max(z) = kNL(z)�(z), in order to avoid the inclusion of
non-linear scales. This cuto↵ scale goes from `max ⇡ 30
at low redshift, up to more than 3000 for higher red-
shift. We show the forecasted DG, along with the cur-
rent measurements, in Fig. 8. To give a rough estimate
of how the sensitivity to DG varies across the experimen-
tal landscape, we calculate the total S/N integrated over
angular scales and redshift bins zi as

S/N =

vuut
X

zi

✓
DG(zi)

�DG(zi)

◆2

. (11)

We can also predict at what significance level a certain
datasets combination can di↵erentiate between standard
⇤CDM and a given alternative model. To this end, we

calculate

�2 =
X

zi

 
D

DE/MG
G (zi) � DG(zi)

�DG(zi)

!2

, (12)

where DG and D
DE/MG
G are the growth factor calculated

for ⇤CDM and a certain dark energy/modified gravity
model respectively. Then, we can quote

p
�2 as the

significance of the discrimination between two scenarios
(Pullen et al. 2015). As can be seen in Tab. 1, LSST
high galaxy number density will allow for high S/N
measurements of DG, making possible the discrimina-
tion between di↵erent exotic models at high significance.
Specifically, the lower lensing reconstruction noise that
characterizes the forthcoming CMB surveys will improve
the overall S/N by a factor 3.4 and 5 with respect to
Planck for SO and CMB-S4, respectively.
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FIG. 5. Left panel: 68% confidence constraints on the shear biases mi for LSST, when self-calibrating them with LSST
cosmic shear alone (blue), LSST full (i.e. clustering, galaxy-galaxy lensing and cosmic shear; green), combination 1 (orange),
combination 2 (yellow) and the full LSST & CMB S4 lensing (red). The self-calibration works down to the level of LSST
requirements (dashed lines) for the highest redshift bins, where shear calibration is otherwise most di�cult. We stress that all
the solid lines correspond to self-calibration from the data alone, without relying on image simulations. Calibration from image
simulations is expected to meet the LSST requirements, and CMB lensing will thus provide a valuable consistency check for
building confidence in the results from LSST.
Right panel: Impact of unaccounted intrinsic alignments (see Sec. IID). The lines show the bias in the self-calibrated value
of mi, and the colored bands show the 68% confidence constraints, corresponding to the curves in the left panel. Intrinsic
alignments produce a bias in the shear calibration, but not beyond the 68% confidence region.

of sensitivity in temperature (assumed
p

2 times smaller than in polarization; left panel), beam FWHM (central panel)
and maximum multipole included in the analysis `

max T,P

(parameterizing the e↵ectiveness of component separation;
right panel). When one parameter is varied, the others remain fixed to their fiducial values from Fig. 1. Note that in
all cases, the survey area is kept fixed at 18, 000 deg2 (f

sky

= 44%). The bottom row of Fig. 7 shows the corresponding
constraints on shear biases mi for each configuration.

The shear calibration improves slowly with sensitivity, by a factor of ⇠ 2 when the noise varies from 10 to 0.5µK 0.
This is understandable since the CMB lensing signal falls o↵ quickly at high `, and therefore a significant reduction
in reconstruction noise is needed to image higher ` lensing modes. For the same reason, we expect iterative lensing
reconstruction methods [61, 62] to only improve shear calibration by a few tens of percent.

For our choice of fiducial `-limits (`
max

= 3000 for T; `
max

= 5000 for E,B), set by foreground cleaning, varying the
beam FWHM between 0.50 and 30 has basically no impact on the shear calibration: a higher resolution experiment
can image higher `-modes, but we are discarding these small scales to avoid foreground contamination.

More realistically, a higher resolution experiment might perform better at component separation and allow to use
higher temperature and polarization multipoles. However, for our fiducial parameters, we find that varying `

max T, P

between 2, 000 and 10, 000 only changes the shear calibration by about 25%.
This is encouraging and shows that upcoming third generation experiments such as Advanced ACT (AdvACT, 1.40

resolution, ⇠ 10µK 0 sensitivity on half of the sky) [98] and SPT-3G (10 resolution, 2.5µK 0 sensitivity on 2, 500 deg2)
[99] can already calibrate the shear from LSST. This calibration will be less precise than from CMB S4, but already
at a useful level. The amount of overlap of AdvACT and SPT-3G with LSST may evolve in the future, and will a↵ect
the shear calibration.

B. Sensitivity to photometric redshift uncertainties

In Sec. III B, we showed that CMB S4 lensing can calibrate the shear from LSST, assuming that the photometric
redshift uncertainties are under control. In this subsection, we ask how crucial this assumption is. We therefore vary
the priors on source and lens photo-z uncertainties and re-run our forecast. The left panel of Fig. 8 shows that the
shear calibration is mildly dependent on the source photo-z uncertainties. The dependence is higher at low redshift,

Bianchini & 
Reichardt 

(2018)

Schaan et al. (2017), Vallinotto (2012)

deflections so that the ��⌦ or �⌦⌦ bispectra are non-null2. However, the effects of this
higher-order correlation is negligible for the analysis presented in the following. We finally
note that post-Born corrections depend strongly on the length of the photon path and are
thus progressively less important for source planes located at lower redshift.

2.2 CMB lensing cross-correlation

The lensing potential can be related to the lensing convergence  in the weak lensing regime
through the Poisson equation  = �r2�/2, so that in the harmonic domain

LM =

L(L+ 1)

2

�LM . (2.5)

Gravitational lensing directly probes the Weyl gravitational potential, but in General Rela-
tivity (and after matter domination) the potential can be related directly to the comoving
density perturbation � via the Poisson equation. Observed angular galaxy densities as a func-
tion of redshift depend on a variety of effects (including redshift distortions, magnification
bias, velocity and potential effects), but can also be approximated at some level as biased
tracers of the comoving density perturbation. It is therefore convenient to rewrite the lensing
observables in terms of convergence field so that the cross-correlation between CMB lensing
and LSS tracers in a given redshift bin can be written in the Limber approximation as

CAB
L ⇡

Z
d�

�2

WA(�)WB(�)P�
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k =

L+ 1/2

�
, z(�)

◆
, A,B 2 {g,

CMB

,z} (2.6)

where P� is the comoving density matter power spectrum, g is the galaxy density, 
CMB

the
CMB lensing convergence and z the lensing convergence of galaxies located at redshift z.
The window function W determines the redshift distribution so that for galaxy density

Wg(�) = bg(z)
1

n

dn

dz

dz

d�
n =

Z
dz

dn

dz
. (2.7)

where bg is the galaxy bias and dn/dz the redshift distribution of the observed galaxies. For
lensing of a source at a comoving distance �s

W(�) ⌘ W(�,�s) = �(�)�2

✓
1

�
� 1

�s

◆
⇥(�s � �), (2.8)

where ⇥ is the step function and the potential  and density are related by k2 ⇡ ��(z)�,
where � is approximately independent of k. In the case of the CMB, �s is the comoving
distance to the last scattering surface, which can be well approximated as a single source
plane. In the case of the lensing convergence of galaxies located at �z, the lensing efficiency
has to be integrated over the source distribution used to estimate the convergence field

Wz(�) =
1

n

Z
d�

dn

dz

dz

d�
W(�,�z). (2.9)

2Following the consistency relations of Eq. (2.5), (3.4), we will refer to these higher order correlations as
! or !! to conform to the most common convention adopted in the literature.
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0.62. This corresponds to a galaxy number density of
n̄ = 8.2⇥105 sr�1, equivalent to 24.5 deg�2 or 1.3 pix�1.

3. THEORY AND METHODS

In this section, we briefly review how a combination of
CMB lensing and galaxy clustering measurements can
constrain the cosmic growth history. We then outline
the analysis methods.

3.1. Theoretical background

The basic idea behind combining CMB lensing and
galaxy clustering measurements is that the two observ-
ables respond to the underlying dark matter field in
complementary ways. Whereas lensing measurements
are sensitive to the integrated matter distribution along
the LOS, galaxy surveys provide a biased sparse sam-
pling of the dark matter field. More quantitatively un-
der general relativity, the CMB lensing convergence 
and galaxy overdensity �g fields can be written as LOS
projections of the 3D dark matter density contrast �:

X(n̂) =

Z 1

0

dz WX(z)�(�(z)n̂, z). (1)

In the above equation, X = {, g}. The kernels WX(z)
encode each observable’s response to the underlying
dark matter distribution:

W(z) =
3⌦m

2c

H2
0

H(z)
(1 + z)�(z)

�⇤ � �(z)

�⇤
, (2)

W g(z) = b(z)
dN

dz
. (3)

Here, H(z) is the Hubble factor at redshift z, �(z) and
�⇤ are the comoving distances to redshift z and to the
last scattering surface. ⌦m and H0 are the present-day
values of matter density and Hubble parameter, respec-
tively. In Eq. 3, we assumed a linear, local, and deter-
ministic galaxy bias b(z) to relate the galaxy overden-
sity �g to the matter overdensity � (Fry & Gaztanaga
1993), while the galaxy sample unit-normalized redshift
distribution is denoted as dN/dz. Since we are select-
ing galaxies based on photo-z’s, we must also account
for the photo-z uncertainties. We do this by convolving
the sample’s photometric redshift distribution with the
catalog’s photo-z error function (Sheth & Rossi 2010):

dN

dz
=

Z 1

0

dz W (zph)
dN

dz
(zph)p(z|zph). (4)

In this equation W (zph) defines the redshift bin – usually
a top-hat function in photo-z space – while the photo-
z error function is modeled as a Gaussian of redshift-
dependent width, p(z|zph) ⇠ G(0, �z(1 + z)), where

Figure 1. Redshift overlap of the 2MPZ galaxy catalog
with the CMB lensing kernel is small and increasing with
redshift. The solid blue line shows the redshift distribution
of the 2MPZ galaxy catalog selected at z

ph

 0.24 while the
dashed orange line shows the CMB lensing kernel. The red
histogram shows the redshift distribution of 2MPZ galaxies
for which spectroscopic information is available (⇡ 1/3 of full
sample). All information is in arbitrary units.

�z = 0.015 (Bilicki et al. 2014; Balaguera-Antoĺınez
et al. 2017). The resulting redshift distribution for our
galaxy sample is shown as the solid blue line in Fig. 1.
The knowledge of the galaxy redshift distribution is a
key ingredient needed to translate the observed power
spectra into a growth factor estimate. We quantify the
impact of the assumed redshift distribution on the re-
sults of the analysis in Sec. 5.3.

For scales smaller than ` & 10, we can adopt the so-
called Limber approximation (Limber 1953) and evalu-
ate the theoretical angular auto- and cross-power spec-
tra as:

CXY
` =

Z 1

0

dz

c

H(z)

�2(z)
WX(z)WY (z)P

✓
k =

` + 1
2

�(z)
, z

◆
.

(5)
Eq. 5 can be thought of as a weighted integral of the
matter power spectrum P (k, z) = P (k, 0)D2(z), where
D(z) is the linear growth function normalized to unity
at z = 0:

D(z) = exp

⇢
�

Z z

0

[⌦m(z0)]�

1 + z0
dz0

�
, (6)

and � ⇡ 0.55 is the growth index in the case of gen-
eral relativity (Linder 2005). We compute the non-linear
P (k, z) using the CAMB4 code with the Halofit prescrip-

4 https://camb.info/
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FIG. 17. Constraints on �8 for our fiducial LSST/CMB-S4 analysis when adding priors on redshift parameters. Left: constraints when having
lmax = 1000. Right: constraints when having lmax = 2000. Each curve adds either a prior on z0, on �z or an equal prior on each. We compare
the curves with priors to the fiducial case of no priors, and the opposite extreme of no redshift uncertainty with z0 and �z fixed in the Fisher
analysis. The priors of 0.003(1 + z) and 0.03(1 + z) come from the LSST DESC SRD requirements ([54]) for z0 and �z, respectively. The
prior of 0.0004(1 + z) is a plausible future achievement by clustering redshifts at low z found in [55].

the DES/SPT-SZ era as the future LSST/CMB-S4. Tightening
the redshift priors brings results closer to the case of no red-
shift uncertainty. We again see that �z is more important than
z0 for constraining �8. In the DES year 1 analysis ([6] and
the others mentioned above), only z0 was constrained. Figure
18 (left) shows that adding a 0.02 prior on �z to the already
achieved 0.02 prior on z0 would improve constraints on �8

for the highest two redshift bins by about 30%. If lmax can be
extended to 2000 (right side of 18), the gains of a 0.02 prior
on �z only go up to 15%.

VIII. CONSTRAINTS ON REDSHIFT PARAMETERS

We focus briefly again in this section on the ability of
galaxy clustering and galaxy-CMB lensing correlation mea-
surements to ‘self-calibrate’ redshifts and compare those con-
straints to photometric redshift techniques. The idea of cali-
brating redshifts strictly from correlation functions was stud-
ied in more detail recently in [28]. A significant difference in
this work though is not fixing the cosmology while solving for
redshift parameters.

As mentioned in Section VII F, the Dark Energy Survey is
already calibrating the mean redshift of bins to an uncertainty
of about 0.02. The Large Synoptic Survey Telescope broadly
has a requirement of constraining the mean of redshift bins to
0.003(1 + z), though likely that number can be beaten at low
redshifts as mentioned in Section VII F. In Figure 19, we com-
pare the LSST DESC SRD [54] required redshift constraints,
and the current DES redshift constraints to our Fisher analysis
of �z and z0 with no priors applied. We show results for both
lmax = 1000 and 2000 in Figure 19. The projections on DES
from correlations with SPT beat the current threshold of 0.02

constraints on the redshift parameters in the first three redshift
bins, even if only lmax = 1000 can be used. As mentioned
previously, currently DES has only constrained the mean red-
shift of bins, z0 and not the width, �z. Work in e.g., [24]
suggests constraints on each parameter should be compara-
ble though from spatial cross-correlations with spectroscopic
galaxies. For LSST, the constraints for lmax = 2000 at low
redshifts (z < 1.5) are stronger than the goal 0.003(1+z) un-
certainty on z0. For lmax = 1000, the constraints are weaker
than this goal, though within a factor of 2 for z < 3. All of
the constraints for both lmax values are better than the LSST re-
quirement on �z of 0.03(1+z) for large-scale structure analy-
ses. Even if the constraints of ‘self-calibrating’ redshifts from
power spectra measurements are merely comparable to tradi-
tional methods of photometric redshift estimation, this could
add significant information to cosmic surveys. A discrepancy
could point to systematics in either the photometric redshift or
power spectra measurements.

IX. CONCLUSIONS

In this work, we sought to answer two questions: 1. How
are analyses of galaxy clustering and CMB lensing affected
by uncertainties in redshift parameters and 2. Can redshift pa-
rameters be self-calibrated by galaxy and CMB lensing cor-
relations. We found in Section VI that the presence of red-
shift uncertainties can increase errors on e.g., �8(z) by an or-
der of magnitude. We showed the importance of using the
cross-correlations of different galaxy bins (Cgigj

l ), which in
the assumption of perfect redshift knowledge is not a neces-
sary measurement.

Though the redshift uncertainties degrade the analysis, the



Name TalkName TalkGiulio Fabbian European CMB coordination 2019

• Systematics in cosmic shear measurements not yet mitigated by CMB-cross 
correlation

State of the art: DES & co.

 6

Omori et al. 2019
(DES collaboration)

12

�CMB �t
��

�t�CMB
��

�0.6
0.0
0.6

m
2

�0.6
0.0
0.6

m
3

�0.6
0.0
0.6

m
4

�2.5
0.0
2.5

AIA

�0.5 0.5

m1

�3.5
0.0
3.5

�IA

�0.5 0.5

m2
�0.5 0.5

m3
�0.5 0.5

m4
-2.0 2.0

AIA
�2.5 2.5

�IA
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FIG. 6. Constraints on ⌦m and S8 from �tCMB, cosmic shear mea-
surement from [11], 3 ⇥ 2pt measurement from [12] and CMBCMB
measurement from [10].

The cross-correlation is detected at 10.8� significance in-
cluding all angular bins; this is reduced to 6.0� after removing
scales that we find to be a�ected by systematics such as tSZ
contamination of CMB and the e�ects of baryons on the matter
power spectrum as described in [23].

We perform several consistency checks on the measure-
ments as well as tests for possible systematic errors. These
include performing null tests by cross-correlating CMB with
stellar density, dust extinction, PSF residuals and the cross-
shear component, and testing our model for tSZ and CIB con-
tamination of the CMB map. We find that of these possible
systematics, the tSZ e�ect dominates, and we mitigate this
bias by applying scale cuts to remove the angular scales that
are a�ected the most.

The analytical covariance matrix that we use is tested by
comparing with the jackknife covariance matrix estimated di-
rectly from the data. The diagonal elements of these covariance
matrices agree to within 25%, which is a reasonable agreement
given that the jackknife method produces a noisy estimate of
the underlying covariance.

Using the measured w�tCMB (✓) correlation functions, we
perform parametric fits. Assuming a ⇤CDM Planck best-fit
cosmology and fixing nuisance parameters to fiducial values
set by DES-Y1, we obtain a global best-fit amplitude of A =
0.99 ± 0.17 which is consistent with expectations from the
⇤CDM cosmological model (A = 1).

Next, we combine our measurement with the Planck base-
line likelihood, and vary the nuisance parameters and attempt
to constrain them. For the shear calibration bias parameters
we obtain the constraints m2,3,4 =[ �0.08+0.47

�0.31, �0.06+0.20
�0.28,

�0.14+0.14
�0.28], while m1 is not constrained well. These con-

straints are less stringent than the DES-Y1 priors derived from
data and simulations, it is anticipated that the �tCMB corre-
lation will be able to constrain shear calibration bias to better
precision than these methods [68] for future surveys such as
CMB-S4 [69] and LSST [70].

For the amplitude of IA, we obtain the constraint AIA =
0.54+0.92

�1.18, which is in agreement with what is obtained from
DES-Y1 cosmic shear measurements. However, the red-
shift evolution parameter ⌘IA is not constrained well using
w�tCMB (✓) measurement alone.

When we marginalize over the nuisance parameters using
the DES-Y1 priors listed in Table I, we obtain constraints on
cosmological parameters that are consistent with recent re-
sults from [37]: ⌦m = 0.261+0.070

�0.051 and S8 ⌘ �8
p
⌦m/0.3 =

0.660+0.085
�0.100. While the constraining power of �tCMB is rela-

tively weak, we obtain independent constraints on ⌦m and S8,
which will help break degeneracies in parameter space when
all the probes are combined.

Future data from the full DES survey and SPT-3G [71]
should provide significant reduction in measurement uncer-
tainties on the w�tCMB (✓) correlation function. Moreover, tSZ
contamination of the temperature-based CMB lensing map
necessitates removal of certain angular scales, which reduces
the signal-to-noise of the measurements significantly. For
SPT-3G, the CMB lensing map will be reconstructed using
polarisation data, which will have minimal tSZ contamina-
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cluding all angular bins; this is reduced to 6.0� after removing
scales that we find to be a�ected by systematics such as tSZ
contamination of CMB and the e�ects of baryons on the matter
power spectrum as described in [23].

We perform several consistency checks on the measure-
ments as well as tests for possible systematic errors. These
include performing null tests by cross-correlating CMB with
stellar density, dust extinction, PSF residuals and the cross-
shear component, and testing our model for tSZ and CIB con-
tamination of the CMB map. We find that of these possible
systematics, the tSZ e�ect dominates, and we mitigate this
bias by applying scale cuts to remove the angular scales that
are a�ected the most.

The analytical covariance matrix that we use is tested by
comparing with the jackknife covariance matrix estimated di-
rectly from the data. The diagonal elements of these covariance
matrices agree to within 25%, which is a reasonable agreement
given that the jackknife method produces a noisy estimate of
the underlying covariance.

Using the measured w�tCMB (✓) correlation functions, we
perform parametric fits. Assuming a ⇤CDM Planck best-fit
cosmology and fixing nuisance parameters to fiducial values
set by DES-Y1, we obtain a global best-fit amplitude of A =
0.99 ± 0.17 which is consistent with expectations from the
⇤CDM cosmological model (A = 1).

Next, we combine our measurement with the Planck base-
line likelihood, and vary the nuisance parameters and attempt
to constrain them. For the shear calibration bias parameters
we obtain the constraints m2,3,4 =[ �0.08+0.47

�0.31, �0.06+0.20
�0.28,

�0.14+0.14
�0.28], while m1 is not constrained well. These con-

straints are less stringent than the DES-Y1 priors derived from
data and simulations, it is anticipated that the �tCMB corre-
lation will be able to constrain shear calibration bias to better
precision than these methods [68] for future surveys such as
CMB-S4 [69] and LSST [70].

For the amplitude of IA, we obtain the constraint AIA =
0.54+0.92

�1.18, which is in agreement with what is obtained from
DES-Y1 cosmic shear measurements. However, the red-
shift evolution parameter ⌘IA is not constrained well using
w�tCMB (✓) measurement alone.

When we marginalize over the nuisance parameters using
the DES-Y1 priors listed in Table I, we obtain constraints on
cosmological parameters that are consistent with recent re-
sults from [37]: ⌦m = 0.261+0.070

�0.051 and S8 ⌘ �8
p
⌦m/0.3 =

0.660+0.085
�0.100. While the constraining power of �tCMB is rela-

tively weak, we obtain independent constraints on ⌦m and S8,
which will help break degeneracies in parameter space when
all the probes are combined.

Future data from the full DES survey and SPT-3G [71]
should provide significant reduction in measurement uncer-
tainties on the w�tCMB (✓) correlation function. Moreover, tSZ
contamination of the temperature-based CMB lensing map
necessitates removal of certain angular scales, which reduces
the signal-to-noise of the measurements significantly. For
SPT-3G, the CMB lensing map will be reconstructed using
polarisation data, which will have minimal tSZ contamina-
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• Using only photometric survey and CMB observables will significantly improve 
cosmological parameters (also Merkel+2017)

Credits L. Legrand  
(w/ S. Ilic, J. Bermejo, 

M. Martinelli)
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• Primordial           : scale-dependent galaxy bias effect.                            through 
cosmic-variance cancellation techniques (Schmittfull & Seljak 2018).

• Can enhance inflation constraints with B-mode delensing with external tracers

• Avoids problem of internal delensing biases removal.
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Figure 9: A summary of the amount of lensing B-modes power removed by di↵erent tracers for di↵erent generations of
experiments.

On the left we show the contribution from each lensing tracers. The cross-correlation among tracers is not considered and for
this reason, the sum of all the contributions can be bigger than one. The purpose is to highlight the relative importance of

each tracer.
On the right we show the power removed by LSS alone and final delensing e�ciency once CMB internal delensing is added.

Here the double-counting information is taken into account and the bars correspond to final delensing e�ciency levels.
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If we instead assume �
8

to be perfectly known, the bias
constraints improve by up to a factor of 5 for high `

max

,
showing that the degeneracy between �

8

and bias plays
an important role for our noise levels. This also explains
why the precision of �

8

and bias are similar when we mea-
sure one and marginalize over the other. If we decrease
noise su�ciently, and cover the CMB lensing kernel with
enough galaxies out to high redshift, this situation will
change at some point and bias can benefit from sam-
pling variance cancellation, so in principle it could be
determined much more accurately than �

8

which is al-
ways limited by sampling variance [59] (also see end of
Section V above). Our forecasts suggest that this may
require experiments beyond CMB-S4 and LSST, but we
leave a more detailed investigation for future work.

B. Local primordial non-Gaussianity

1. Setup

We continue with forecasts for local primordial non-
Gaussianity from its scale-dependent bias e↵ect. To allow
some freedom of the shape of the matter power spectrum,
we marginalize over a ‘fake’ parameter f fake

NL

that rescales
the matter power spectrum using the same scale- and
redshift-dependence as the scale-dependent bias:

C
` =

Z

z
W 2

 (z) [1 + f fake

NL

�(k, z = 1)]2 P
mm

(k, z), (20)

Cgi
` =

Z

z
W(z)Wgi(z)Bibi(z) [1 + f

NL

�(k, z)]

⇥ [1 + f fake

NL

�(k, z = 1)]2 P
mm

(k, z), (21)

and

C
gigj
` =

Z

z
Wgi(z)Wgj (z)Bibi(z)Bjbj(z)Pmm

(k, z)

⇥ [1 + f
NL

�(k, z)]2 [1 + f fake

NL

�(k, z = 1)]2

+ �KijN
gigi
` . (22)

Here, �(k, z) / k�2 is the fractional change of the bias
for f

NL

= 1 as defined in Eq. (B2). The equations as-
sume the Limber approximation with k = `/�(z), but we
include beyond-Limber corrections on large scales `  50
as described in Appendix A, where we also define the
redshift kernels W and the shot noise Ngg. The redshift
integrals include a conversion factor given by Eq. (A9).
A more complete analysis would marginalize over all
changes of the matter power spectrum due to changes
in cosmological parameters within some priors, but we
expect that marginalizing over f fake

NL

captures the worst
possible case because its shape is perfectly degenerate
with that of the true f

NL

.
We also marginalize over linear galaxy bias by

marginalizing over the bias amplitude parameters Bi of

FIG. 15. Forecasted precision of the amplitude of local
primordial non-Gaussianity f

NL

as a function of minimum
wavenumber `

min

of CMB lensing  and galaxy overdensities,
for di↵erent LSS surveys (colors), assuming `

max

= 500 and
f
sky

= 0.5. Solid curves assume all experiments observe the
same patch of sky, whereas dashed curves assume mutually
independent patches with no sky overlap. We marginalize
over galaxy bias and over f fake

NL

defined in Eqs. (20)-(22) to
marginalize over changes in the matter power spectrum that
mimic the e↵ect of f

NL

. Integrations along the line of sight
are computed exactly for `  50 and with the Limber approx-
imation for ` > 50.

each tomographic redshift bin, assuming that the redshift
evolution of the bias within each redshift bin is known,
and assuming no priors for the amplitudes Bi.

2. Baseline results

In Fig. 15 we show the expected f
NL

precision as a
function of the largest scale or minimum wavenumber
`
min

included in the analysis. A joint analysis of CMB-
S4 lensing with 3-year i < 27 LSST clustering measure-
ments at z = 0 � 7 is able to reach �(f

NL

) = 0.4 for
`
min

= 2, �(f
NL

) = 0.7 for `
min

= 10, and �(f
NL

) = 1
for `

min

= 20. This is twelve to five times stronger than
the best current constraint, �(f

NL

) = 5.0 [79]. Com-
bining CMB lensing with LSS clustering on large scales
thus o↵ers an intriguing method to test if f

NL

is larger or
smaller than one, which is very exciting because a detec-
tion of f

NL

> O(1) would rule out single-field inflation
in a model-independent way (see Appendix B 1).

3. Driving factors

The baseline f
NL

forecast is driven by several factors
that we discuss next.

First, as already indicated above and shown in Fig. 15,
the f

NL

precision improves rather strongly with the

4

reason, primordial B-modes are a promising signature of
early Universe tensor perturbations.

However, primordial B-modes are obscured by gravita-
tional interactions between the large scale structures and
the CMB that generate CMB B-modes by distorting pri-
mordial E-modes. At first order, given the convergence
field  = � 1

2r
2� introduced in section II A the B-modes

resulting from the lensing of the primordial E-modes are:

Blens(l) =

Z
d2l0

(2⇡)2
W (l, l0)E(l0)(l� l0) (9)

where di↵erent modes contributes with a di↵erent weight:

W (l, l0) =
2l0 · (l� l0)

|l� l0|2 sin(2'l,l0). (10)

Here 'l,l0 is the angle between the two di↵erent modes
l and l0. From this we get the power spectrum of the
lensing component of the B-modes:

CBB,lens
` =

Z
d2l0

(2⇡)2
W 2(l, l0)CEE

l0 C
|l�l0|. (11)

The B-mode power spectrum measured on the sky is
composed of a possible primordial component CBB,r

` to-

gether with the lensing CBB,lens
` contribution and the

instrumental noise NBB
` (defined in Eq. (26)):

CBB,measured
` = CBB,r

` + CBB,lens
` + NBB

` . (12)

The lensing component is a significant source of B-modes
that, at large scales, corresponds to a white noise source
of roughly 5µK-arcmin independent of the angular scale.
This means that it is not only larger than the allowed
inflationary component at scales smaller than several de-
grees (r0.05 < 0.07 from [40]), but it is also comparable
to current levels of instrumental noise. For this reason, it
is critical to characterize and eventually remove it from
the data. To do so, while other approaches are possible
([20, 21, 41]), here we assume a ”template approach”:
we build a template Eq. (9) of the lensing B-modes in
the observed patch given a measurement of the E-mode
field and the lensing potential �. While E is measured
directly, we can estimate � using ”tracers” of the matter
distribution that sources the potential.

A. Single tracer of the lensing potential

We will now show how the delensing e�ciency is re-
lated to the fidelity of the lensing tracers and the instru-
mental noise in the CMB E-modes. If we have a large
scale structure field I(n̂) that traces the lensing potential
we can build a template of the lensing B-modes on the
sky by a weighted convolution:

B̂lens(l) =

Z
d2l0

(2⇡)2
W (l, l0)f(l, l0)EN (l0)I(l� l0), (13)

where f(l, l0) can be determined by minimizing the di↵er-
ence with the true Blens(l) defined in Eq. (9). We include
the instrumental noise in the CMB E-modes (EN ) that
will also limit the ability to fully reconstruct the lensing
B-modes.

The residual lensing B-modes due to an imperfect
knowledge of the true E-mode and � will be

Bres(l) = Blens(l) � B̂lens(l) =

Z
d2l0

(2⇡)2
W (l, l0) ⇥

�
E(l0)(l� l0) � f(l, l0)EN (l0)I(l� l0)

�
.(14)

The optimal weights f(l, l0), chosen such that the resid-
ual lensing B mode power is minimized, are [42]:

f(l, l0) =

✓
CEE

l0

CEE
l0 + NEE

l0

◆
CI

|l�l0|

CII
|l�l0|

. (15)

Here CI and CII are the cross-correlation spectrum of
the tracer I with the lensing convergence  and its au-
tospectrum; they are described for each LSS field in sec-
tion II. The power spectrum of the E-modes noise NEE

is the same as the B-modes one in Eq. (26).
With this choice of f(l, l0) we find that the residual

power is:

CBB,res
l =

Z
d2l0

(2⇡)2
W 2(l, l0)CEE

l0 C
|l�l0| (16)

⇥

1 �

✓
CEE

l0

CEE
l0 + NEE

l0

◆
⇢2
|l�l0|

�

with

⇢2
` =

(CI
` )2

C
` CII

`

. (17)

Eq. (16) highlights the di↵erent factors that control the
delensing e�ciency. The first part of the second term in
the parenthesis consists of an inverse variance filter ap-
plied to the measured E-mode. The smaller the noise in
the E-modes (NEE) is the closer this term is to a value
of 1: a less noisy measurement improves the template
of the lensing B-modes. The second captures the di↵er-
ence between the reconstructed � and the CMB lensing
potential, and it directly relates the residual power af-
ter delensing with the cross-correlation coe�cients with
CMB lensing of the tracers used. The larger the ⇢2

` is for
an LSS field, the more it is correlated with the lensing
potential acting on the CMB photons. A higher corre-
lation allows for a better reconstruction of � and, as a
consequence, of Blens leading to a smaller residual power
CBB,res

l . We conclude this section showing in Fig. 2
the expected residual lensing B-modes power spectrum
for some of the tracers used in this work together with
the primordial B-modes component and the instrumental
noise for current and future experiments.

Manzotti (2018)

Schmittfull & Seljak 
(2018)

σ( f local
NL ) ≈ 0.7
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8 Subaru HSC and Polarbear collaborations

Figure 7. The cross-power spectra between the cosmic
shear from HSC and CMB lensing convergence from Po-
larbear. The CMB lensing map is reconstructed from the
quadratic EE/EB estimator or the optimal combination of
these two estimators (EE + EB). The black solid line is
the theoretical prediction assuming the Planck 2018 best fit
cosmological parameters for the flat ⇤CDM model.

where Ab is the relative amplitude of the power spec-
trum compared with a fiducial power spectrum, Cf

b, i.e.,
Ab ⌘ Cb/C

f
b and the weights, ab, are taken from the

bandpower covariance according to

ab =
X

b0

C

f
bCov

�1
bb0C

f
b0 . (15)

The fiducial bandpower values and their covariances428

including the o↵-diagonal correlations between dif-429

ferent multipole bins are evaluated from the simula-430

tions. In our baseline analysis, we assume the ⇤CDM431

cosmology with the Planck 2018 best fit parame-432

ters (TT,TE,EE+lowE+lensing).433

The amplitude estimated from the observed cross-434

spectrum is b
Alens = 1.70 ± 0.48,1 corresponding to a435

detection of non-zero power at 3.5� significance. The436

PTE of the spectrum with respect to the ⇤CDM cos-437

mology is 66%. The b
Alens we obtained is slightly larger438

1Our simulation assumes the WMAP9 best fit cosmology while
in the baseline analysis the amplitude is measured against the
Planck 2018 best fit cosmology (“TT,TE,EE+lowE+lensing” in
Planck Collaboration 2018b). This leads to a small change in
the mean and scatter of the amplitude parameter. We correct
this discrepancy by simply scaling the simulated cross-spectrum
at each realization as Ci

b ⇥ (Cf

b/hC
i
bi). The variance of the ampli-

tude obtained from simulation is also scaled by a value estimated
from an analytic formula for �(A

lens

) assuming ng = 23 arcmin�2,
e
rms

= 0.4, a 6µK-arcmin CMB white noise, and a 3.05 Gaussian
beam.

Table 3. The amplitude of the cross power spectrum bA
lens

estimated with di↵erent HSC photo-z methods and the best
fit cosmological parameters.

Baseline analysis

1.70± 0.48

photo-z

Ephor 1.70± 0.48

Frankenz 1.69± 0.48

MLZ 1.83± 0.51

Mizuki 1.69± 0.49

Fiducial Cosmology

WMAP9 1.99± 0.56

Figure 8. Correlation coe�cients of the cross spectrum
between CMB lensing and galaxy shear estimated from 100
realizations of simulation.

Table 4. The amplitude of the cross power spectrum bA
lens

estimated with di↵erent CMB analysis choices.

CMB multipoles

`
max

= 2500 1.64± 0.49

`
min

= 700 1.89± 0.57

Estimator

EE 1.07± 0.93

EB 1.65± 0.50

than unity but consistent with the Planck prediction439

within 2� level. Our result also agrees with the pre-440

vious cross-correlation analyses, although their best-fit441

values still have a large variation Alens ' 0.4–1.3 (e.g.,442

Liu & Hill 2015; Harnois-Déraps et al. 2016, 2017). Ta-443

8

Table 2. Null test suites summary statistics.

Null test suite Worst PTE KS by bin KS by test

All tests 28% 62% 85%

Polarbear 28% 67% 92%

Analysis 55% 97% 92%

548

5. RESULTS549

5.1. Cross-power spectrum550

The final cross-power spectrum between the Polarbear551

CMB lensing convergence maps and the H-ATLAS552

galaxy overdensity is shown in Fig. 4. As men-553

tioned in Sec. 4.1, we calculate the error bars on554

the band powers by cross-correlating 500 realizations555

of the CMB lensing field as reconstructed by the556

Polarbear pipeline with the real H-ATLAS maps. By557

doing so, we assume that two maps are uncorrelated,558

which turns out to be a well-founded assumption since559

(C

L

+ N

L

)(Cgg

L

+ Ngg

L

) � (Cg

L

)2 over the relevant560

scales. More quantitatively, adopting our fiducial cross-561

correlation model, we have checked that neglecting the562

cross-power spectrum term leads to an underestimation563

of the uncertainties of about 14% for the first bin and564

less than 5% for the second bandpower. We also note565

that the covariance matrix is dominated by the diago-566

nal elements, with a neighbouring bins correlation of at567

most ⇡ 15%. A statistically significant cross-power is568

detected. We define the null-hypothesis as the absence569

of correlation between the CMB lensing and the galaxy570

fields, i.e. Cg

L

= 0. Then, the chi-square value571

under this null-hypothesis can be evaluated as572

�2
null =

P
LL

0 Ĉ
g

L

C�1
LL

0Ĉ
g

L

0 ' 26.1.573574

5.2. Constraints575

As we have seen in Sec. 3, the theoretical cross-576

power spectrum Cg

L

depends on cosmology, for example577

through the ⌦
m

H2
0�8 combination and astrophysical578

parameters, such as the galaxy bias b. Here, we fix579

the underlying cosmology and fit for the linear galaxy580

bias. For reference, the assumed values of mat-581

ter density, Hubble constant (in km s�1Mpc�1),582

and �8 are {⌦m, H0,�8} = {0.3153, 67.36, 0.8111}.583

The large number of e↵ective independent modes584

in each band power allows us to assume a Gaus-585

sian likelihood as �2 lnL(Ĉg

L

|b) / �2, where �2 =586

P
LL

0

h
Ĉg

L

� Cg

L

(b)
i
C�1

LL

0

h
Ĉg

L

0 � Cg

L

0 (b)
i
. The pos-587

terior space is then sampled through a Markov chain588

Monte Carlo (MCMC) method implemented in the pub-589

250 500 750 1000 1250 1500

Multipole L

0

2

4

6

C
�
g

L
(⇥

10
�

7 )

Best-fit theory

MV

Figure 4. Final cross-power spectrum between Polarbear
CMB lensing and the H-ATLAS galaxy overdensity in RA12
and RA23 patches (black circles). The dotted black line
represents the best-fit theoretical model (corresponding to a
galaxy bias of b = 5.76±1.25), while the dark and light grey
shaded regions indicate the 1 and 2� uncertainties respec-
tively.

licly available emcee code (Foreman-Mackey et al. 2013).590

The resulting best-fit galaxy bias is b = 5.76±1.25 with591

a corresponding �2
bf ' 2.5 for ⌫ = 5 � 1 = 4 degrees-of-592

freedom, or a PTE of about 64%.3 The significance is593

computed as the square-root of the di↵erence be-594

tween the null-line chi-squared value (b = 0) and595

the best-fit theory line, S/N =
p

�2
null � �2

bf ' 4.8.596

To give a sense of how an assumption of dif-597

ferent cosmological parameters propagates into598

the inferred constraints on the galaxy bias, we599

perturb �8 by ±3%. The corresponding galaxy600

biases are found to be b = 6.22 ± 1.26 and b =601

5.49±1.12 (negative and positive perturbations re-602

spectively). The di↵erences with respect to the603

baseline galaxy bias constraint are well within604

the statistical uncertainty.605

3
The central value and the ±1� uncertainties are evaluated as

the 50th and 16th/84th percentiles of the posterior distribution

respectively.

POLARBEAR collaboration (2019) 

POLARBEAR+HSC collaboration (2019) 

• EB+EE reconstruction channels deep enough to allow cross-correlation 

• POLARBEAR x HSC : 3.5𝜎

• POLARBEAR x H-ATLAS: 4.8𝜎
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Figure 2. The overlapping sky coverage of Polarbear and
HSC maps in this work. Contours show the noise level of the
Polarbear CMB polarization maps. The color map shows
the e↵ective number density of the HSC galaxy catalog.

Strategic Program (SSP; Aihara et al. 2018a), which in-
cludes the WIDE layer, aiming to cover 1,400 deg2 of
the sky down to ilim ⇠26 (point source detection at 5�)
in five broad bands (grizy).
In this paper, we use galaxies from the first-year

HSC galaxy shape catalog (Mandelbaum et al. 2018a)
for the cross-correlation study. The shape catalog in-
cludes galaxies with their i-band magnitudes, which
are brighter than 24.5, after correcting for the Galac-
tic extinction (Schlegel et al. 1998). The shapes of
these galaxies are estimated on coadded i-band images
with the re-Gaussianization method (Hirata & Seljak
2003); this method was extensively used in the SDSS,
as its systematics are well-understood (Mandelbaum
et al. 2005; Reyes et al. 2012; Mandelbaum et al. 2013).
The shape catalog contains calibration factors for each
galaxy derived from image simulations (Mandelbaum
et al. 2018b), and generated by GalSim (Rowe et al.
2015): the shear multiplicative bias m (shared among
two shear components) and the additive bias for each
shear component c1 and c2. The following quantities
are also calibrated against the image simulations: the
intrinsic shape noise erms, the estimated measurement
noise �e, and the inverse-variance weight from both erms

and �e. Note that we use an updated version of the
shape catalog from the one originally presented in Man-
delbaum et al. (2018a), where bright stars are masked
with the new “Arcturus” star catalog (Coupon et al.
2018), which is improved in comparison to the old “Sir-
ius” catalog (see Mandelbaum et al. (2018a); Coupon
et al. (2018) for detailed discussions).
In this paper, we use the 13.3 deg2 HSC WIDE12H

field, as it overlaps with the Polarbear survey. The
WIDE12H field is one of six distinct fields observed from
March 2014 to April 2016 for about 90 nights in total,
which is a slight extension of the Public Data Release 1
(Aihara et al. 2018b). The HSC data are reduced by the
HSC pipeline (Bosch et al. 2018). The weighted number

density of source galaxies in this field is 23.4 arcmin�2

and its median (mean) redshift (see below) is zmedian =
0.88 (zmean = 1.0). Figure 2 shows the overlapping sky
coverage of the Polarbear and HSC data in this paper.
The overlapping sky coverage is 11.1 deg2, where the
noise level of the Polarbear polarization measurement
is smaller than 20µK-arcmin.
For the baseline redshift distribution of the source

galaxies, we use the one estimated from COSMOS 30-
band photometric redshifts (Ilbert et al. 2009), which
were estimated for galaxies in the COSMOS field, us-
ing 30 photometric bands spanning from ultraviolet to
mid-infrared. We reweight the redshift distribution of
the COSMOS 30-band photometric redshift sample to
adjust it to match our source galaxy sample on a self-
organizing map created with four colors of HSC (More et
al. in prep., see also Miyatake et al. 2018; Hikage et al.
2018). To test the robustness of this result, we compare
the one predicated on this baseline redshift distribu-
tion, with those obtained using several photometric red-
shift estimations (based solely on the four HSC colors):
“Ephor,” “Frankenz,” “MLZ,” and “Mizuki” (Tanaka
et al. 2018). For each case, the total redshift distribu-
tion of the source galaxy sample is obtained by stacking
the photometric redshift probability distribution func-
tion of each galaxy in this paper. We also show the red-
shift distributions of the source galaxies derived from
these methods in Figure 1.
In all analyses of the HSC data, we use magnitudes

corrected for the Galactic extinction. Therefore, we do
not expect any cross-correlation between the dust con-
tamination in our CMB and optical data. Although
there might be a residual e↵ect due to an imperfect cor-
rection of the Galactic extinction on galaxy magnitudes,
for example, it is currently poorly understood and ex-
pected to be small compared to the noise level of our
cross-correlation signal.

3.3. Simulated Data

We create simulated data to estimate the covariance
and to perform validation tests. The mock simulations
are based on the all-sky ray-tracing simulations gener-
ated by Takahashi et al. (2017), and in each one, they
generate both CMB and galaxy lensing signals. We then
add realistic noise, following noise properties of each sur-
vey as described below. From an all-sky ray-tracing sim-
ulation, we randomly cut out areas corresponding to the
HSC WIDE12H geometry to create many realizations.
In total, we generate 100 WIDE12H field realizations
from the single all-sky realization.
We add HSC source galaxies to the ray-tracing simu-

lation following the prescription described in Oguri et al.
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Fig. 3. Cumulative contribution of different redshifts to the power spectrum of the lensing potential
for a concordance ΛCDM model. Note we have used a log scale for Cψ

l in the left-hand plot, but
linear in the right-hand plot.
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Fig. 4. Contributions of different wavenumbers k (in Mpc−1) to the power spectrum of the lensing
potential for a concordance ΛCDM model.

l ≥ 1 the Bessel functions go to zero at the origin, jl(kχ) → 0 as χ → 0, so the l ≥ 1 power
spectrum is finite and well defined.

The last scattering surface is a long way away, so the lensing potential has contributions out
to quite high redshift as show in Fig. 3. Nearby low redshift potentials only contribute to
the large-scale lensing, so the spectrum is only quite weakly sensitive to late time non-linear
evolution. The contributions from different wavenumber ranges are shown in Fig. 4.

28

Are we ready for precision cross-correlation?
• Are our forward modeling and estimators good enough for SO/S4, LSST/Euclid era?

• How non-linear evolution affects cross-correlation observables? Is the Born 
approximation good enough?

• Accurate coherent modelling to be done on full-sky: need efficient tools.
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Figure 5. Post-component-separation noise curves for the combination of six SO LAT (27–280 GHz) and seven Planck (30–353 GHz)
frequency channels, assuming a wide SO survey with f

sky

= 0.4, compared to the expected signal (black). The left (right) panel shows CMB
temperature (E-mode polarization). Foregrounds and component separation are implemented as in Sec. 2.4 and Sec. 2.5.1, considering
multipoles up to `

max

= 8000. The blue (orange) curves show the component-separated noise for the SO baseline (goal) noise levels,
assuming standard ILC cleaning. The dashed and dash-dotted curves show various ILC foreground deprojection options, described in
Sec. 2.5.1. The tSZ deprojection penalty is larger than that for CIB deprojection because of (i) the relatively high noise at 225 GHz
compared to 93 and 145 GHz and (ii) the lack of a steep frequency lever arm for the tSZ signal as compared to the CIB. The dotted
orange curves show the no-foreground goal noise, i.e., when SO LAT and Planck channels are combined via inverse-noise weighting. This
is the minimal possible noise that could be achieved. The temperature noise curves fluctuate at low-` due to the use of actual sky map
realizations, as opposed to the analytic power-spectrum models in polarization.
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C
�
�

L

��(fsky =0.4): SO LAT + Planck

Lensing Power
Baseline / MV N

L from Standard ILC (no deproj.)

Goal / MV N
L from Standard ILC (no deproj.)

Goal / Pol-only N
L from Standard ILC (no deproj.)

Goal / MV N
L from tSZ+CIB and dust+synch. deprojected

Planck

Figure 6. ⇤CDM CMB lensing power spectrum (black) compared
to SO LAT lensing noise curves, N

L , reconstructed assuming a po-
larization only (Pol-only) or minimum variance (MV) combination
of estimators in the case of standard ILC for both CMB tempera-
ture and polarization cleaning (solid and dashed curves), and tSZ
and fiducial CIB SED deprojection for CMB temperature clean-
ing and fiducial polarized dust and synchrotron SED deprojection
for CMB polarization cleaning (dot-dashed curve). SO baseline
and goal scenarios are shown in blue and orange, respectively, and
compared to the Planck lensing noise (Planck Collaboration 2018e,
yellow). SO will be able to map lensing modes with S/N > 1 to
L > 200.

of ⌧ = 0.06± 0.01 (Planck Collaboration 2016o; neglect-
ing the small change in the mean value and the improve-
ment to �(⌧) = 0.007 with the 2018 results; Planck Col-
laboration 2018d). For the LAT, the Planck data are
included in the co-added noise curves over the sky com-
mon to both experiments. Additionally, for the largest
angular ranges not probed by SO, we include TT , TE

Table 3
Forecasts of ⇤CDM parameter uncertainties for SO compared to

Plancka

Parameter Planck SO-Baseline+Planck
⌦bh

2 0.0001 0.00005
⌦ch

2 0.001 0.0007
H

0

[km/s/Mpc] 0.5 0.3
109As 0.03 0.03
ns 0.004 0.002
⌧ 0.007 0.007

aThe ‘Planck’-only constraints reported here are from the final
2018 Planck data (Planck Collaboration 2018d). We check that
our Planck forecast code (using T/E at 2  `  29 with f

sky

=
0.8, TT/TE/EE at 30  `  2500 with f

sky

= 0.6, and  at
8  L  400 with f

sky

= 0.6) yields similar results, except for
small di↵erences: we find �(H

0

) = 0.6 km/s/Mpc, �(109As) =
0.04, �(⌧) = 0.009.

and EE from Planck over 80% of the sky at 2  `  29.
For the sky area not accessible to SO, we add an ad-
ditional 20% of sky from Planck in the angular range
30  `  2500. This produces an overall sky area of
60% which is compatible with the area used by Planck
after masking the Galaxy. For the Planck specifications
we follow the procedure described in Allison et al. (2015)
and Calabrese et al. (2017), scaling the overall white
noise levels to reproduce the full mission parameter con-
straints. For reference, we give forecast constraints on
the ⇤CDM parameters in Table 3 for SO combined with
Planck, compared to the published results from Planck
alone (TT,TE,EE+lowE+lensing, Planck Collaboration
2018d). Both cases use temperature, polarization, and
lensing data. In this paper we will refer to ‘SO Base-
line’ and ‘SO Goal’ forecasts; these all implicitly include
Planck.
In many cases we combine SO forecasts with DESI

and LSST. For LSST we consider an overlap area of

Lewis & 
Challinor 

(2006)

Simons Observatory 
collaboration (2019)

Josquin Errard 
 on the behalf of the Simons Observatory collaboration  

53rd Rencontres de Moriond 
La Thuile, Italy, 22 March 2018

1



Name TalkName TalkGiulio Fabbian European CMB coordination 2019

How to include non-linearities and post-Born?

 11

4Fosalbaetal.

Figure1.Theonionuniverse:adecompositionofthelightcone
thatmimicsthedatastructureinphotometricgalaxysurveys.
Thesimulateduniverseisrenderedasadiscretesetofprojected
matterdensityshpericalshellsinthelightconearoundtheob-
server,i.e,atthecenteroftheconcentricspheres.2Dspherical
shellsareequallyspacedincomovingtimeandpixelizedusing
theHealpixtesselationofchosenangularresolution.Forclarity,
inthisfigureweonlyshowoneofthehemispheres(i.ehalfthe
onionuniverse)forseveralofthelowestredshiftshells.

rootofthenumberofindependentrBAOcells:

∆BAO≡
∆rBAO

rBAO
≃

„

r3BAO

V

«1/2

(1)

whereVisthesampledvolume,andwehaveassumedGaus-

sianerrors(withnegligibleshot-noise)overthefirsttwo
BAOwiggles(seealsoAnguloetal2008).Thus,forthe

onionshellatz=0.6weestimate∆BAO≃1/
√

1000≃3%.

Accordingtothisruleofthumb,wecangetto0.6%relative
errorinmeasuringrBAOusingthewholeMICEsimulation

volume,ascomparedto9%withtheMilleniumsimulation.

2.2Compressionfactor

Tobuildthelight-conewithsufficientaccuracy,wehaveused
200comovingsimulationoutputs.Eachoutputtakes250

Gbytes,sothetotalstoragerequiredisabout49Terabytes.
Ifwematchthespatialwidthoftheonionshells(aswehave

done)tothetimelagbetweentheoutputsthatareused

tobuildthelight-conewewillhaveequivalentinformation
forapplicationsthatdonotrequireangularorredshiftres-

olutionbetterthanthatprojectedontothepixelmaps.We

haveproduced200suchHealpixmaps,eachoccupies201
Megabyte,whichrepresentsatotalof39Gigabytes.Thus,

thereistotalcompressionfactorofabout1300whenusing

Figure2.Onionshelldensitymapatz≃0.036(thiscorresponds
toacomovingdistanceofr=108±8Mpc/h)

Figure3.Onionshelldensitymapatz≃0.15(comovingdis-
tancer=439±9Mpc/h)

c⃝0000RAS,MNRAS000,000–000

+=

Fosalba 
et al. 
(2008)

Fabbian & Stompor (2013) 
Calabrese, Carbone, Fabbian+ (2015) 
Fabbian, Calabrese, Carbone (2018)

• N-body simulations (DEMNUni, Castorina+ 2016) 
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We can easily discretize the Eq. (2.2) as

AN
ij (✓,�N ) = �Kij �

N�1X

k=0

Dk,N

DN
U

(k)
ip (�(k),�k)A

(k)
pj (✓,�k), (2.11)

where we defined for simplicity Dk,N = fK(�N � �k), Dk = fK(�k) while N is the number
of planes necessary to reach the source at comoving distance �N . The method in Eq. (2.11)
becomes computationally unfeasible very quickly, especially when we have a large number
of lens planes covering a wide sky fraction. It, in fact, requires that for each k-th iteration
all the information of the k � 1 deflections is kept. This becomes particularly problematic
in the case of CMB where the source plane is located at very high redshift and at least 50
(or more) iterations are required to model the path of CMB photons. [49, 65] proposed a
more e�cient method that requires the combination of only two previous lens-planes instead
of the whole set as Eq. (2.11). The method has been validated on the full-sky in [50]. The
angular position �(k) at the k-th shell is a function of its two previous positions �(k�2) and
�(k�1) as

�(k) =

✓
1 � Dk�1

Dk

Dk�2,k

Dk�2,k�1

◆
�(k�2)+

Dk�1

Dk

Dk�2,k

Dk�2,k�1

�(k�1)�
Dk�1,k

Dk
↵(k�1)(�(k�1)), (2.12)

and, by di↵erentiating with respect to ✓ as in Eq. (2.2), we obtain the recurrence relation
for the magnification matrix [49, 50] as well:

A
(k)
ij =

✓
1 � Dk�1

Dk

Dk�2,k

Dk�2,k�1

◆
A

(k�2)

ij +
Dk�1

Dk

Dk�2,k

Dk�2,k�1

A
(k�1)

ij �
Dk�1,k

Dk
U

(k�1)

ip A
(k�1)

pj . (2.13)

These relations require fewer arithmetic operations and memory usage than the standard
discretization of Eq. (2.11), therefore allowing us to compute iteratively the magnification
matrix for each light-rays from the observer to any source. In the following we will also make
use of the so-called magnification matrix in the first order approximation [49] to assess the
impact of the second-order e↵ects and to distinguish those from numerical e↵ects. In the
multiple-lens formalism this takes the form

A
(N),1st
ij (✓,�s) = �Kij �

N�1X

k=0

Dk,N

DN
U

(k)
ij (✓,�k). (2.14)

3 The Algorithm

A detailed outline of the algorithm, including the construction of the past light-cone and the
map-making procedure, has been given in [55]. In the following, we summarized the map-
making procedure to produce lensing planes and the numerical and improvements specific to
this work.

3.1 N-body simulation

The results reported in this were derived using the reference ⇤CDM simulation belonging to
the “Dark Energy and Massive Neutrino Universe” (DEMNUni) simulation project. We refer
the reader to [45, 66] for a more detailed description of the simulations and for an extended
discussion on the physical results issued by the project. The DEMNUni suite consists in

– 6 –

induced by lensing between the original image and the one at the current position on the
lens plane. Note that the gravitational potential  is evaluated at the ray angular position
�(✓,�), while the distortion itself - which is present at the r.h.s of Eq. (2.2) and describes the
lens-lens coupling - is computed at the “background” position ✓. The magnification matrix
A is typically decomposed into four fields describing how the light rays coming from a source
at � ⌘ �s are transformed by the passage through the matter distribution,

Aij ⌘
✓

cos! sin!
� sin! cos!

◆✓
1 � � �

1

��
2

��
2

1 � + �
1

◆
⇡

✓
1 � � �

1

��
2
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, we find an enhancement of the total bispectrum. The grey dashed line denotes the b = 0 contour. In
the equilateral limit, the tree-level LSS bispectrum is enhanced by a factor of ⇠ 2 by the post-Born corrections and the non-linear SC LSS
bispectrum by a factor of ⇠ 1.5.

This agrees with the galaxy lensing result of Ref. [10] when restricted to observing the convergence (trace of the distortion
tensor) directly.

Non-linear structure growth will also give additional contributions from the large-scale structure bispectrum, which in the
Limber approximation has the form [42]
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The potential bispectrum on the right-hand side of this equation can be approximated by the tree-level result for the fractional
matter density perturbations [43]:

b���(k1, k2, k3;�) = 2F2(k1,k2; z)P��(k1, z(�))P��(k2, z(�)) + cyc. perm., (4.8)
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and k2 (k, z) ⇡ ��(z)�(k, z) with �(z) ⇡ k2
p
P  (k, z)/P��(k, z) approximately independent of k. The baseline tree-level

result has A = B = C = 1 in Eq. (4.9), so that F2 is independent of redshift, but even in this case we use the non-linear P��

from halofit to improve accuracy [41]. We also consider extended fitting formulae for A, B and C from Scoccimarro and
Couchman [41] (denoted “SC”) to assess the order of magnitude of fully non-linear corrections beyond tree level5

5 We use a dewiggled form for n ⌘ d lnP��,lin/d ln k in the fitting function following Ref. [44]. Ref. [44] (“GM”) also provide updated fits, but they are
not validated at high redshift and may behave in an unphysical way there, so we restrict to the original fit of Ref. [41]. Using the updated fits would slightly
increase the LSS bispectrum signal, but not change results qualitatively. At L = 1000 the equilateral lensing bispectrum is enhanced by ⇡ 2⇥ compared
to tree level using the SC fit, and ⇡ 2.5⇥ in the GM fit, but the difference is much less for folded configurations (where the non-linear enhancement at
L
1

= 1000 is less than 20%).
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Throughout the paper, we will use the convention that the
differential operator ∇ is only applied to the object directly
following it. Applications on composite objects will be
indicated by brackets. In harmonic space, products turn into
convolutions and gradients correspond to multiplication
with −il, so that

~TðlÞ ¼ TðlÞ þ δTðlÞ þ δ2TðlÞ þOðϕ3Þ ð9Þ

with OðϕÞ correction,

δTðlÞ ¼ −
Z

l0
l0 · ðl − l0ÞTðl0Þϕðl − l0Þ; ð10Þ

and Oðϕ2Þ correction

δ2TðlÞ ¼ 1

2

Z

l0

Z

l00
½l0 · l00&½l0 · ðl − l0 − l00Þ&

× Tðl0Þϕðl00Þϕðl − l0 − l00Þ: ð11Þ

All perturbations are linear in the unlensed temperature T.
The lensing potential is a weighted projection of the

gravitational potential ψ along the line of sight,

ϕðn̂Þ ¼ 2

Z
χ'

0
dχWðχÞψðχn̂; ηðχÞÞ ð12Þ

where χ denotes the comoving angular diameter distance,
W the lensing efficiency and η the conformal time. In a flat
Universe, which is assumed here, the lensing efficiency
simplifies to

WðχÞ ¼ −
χ' − χ
χ'χ

; ð13Þ

where an asterisk is used to mark quantities at decoupling.
This description of CMB lensing relies on the Born
approximation, which assumes that the integration can
be carried out along the unperturbed photon geodesic.
Commonly, the lensing potential is modeled as a

homogeneous Gaussian random field, which is solely
characterized by its power spectrum. This power spectrum
is well described by a Limber projection of the power
spectrum of matter fluctuations, Pδðk; ηÞ,

Cϕϕ
L ¼

Z
χ'

0
dχ

4WðχÞ2

χ2
γðχÞ2

ðL=χÞ4
PδðL=χ; χÞ; ð14Þ

where

γðχÞ≡ 3

2

H2
0Ωm0

c2aðχÞ
: ð15Þ

In this work, we drop the assumption of Gaussianity and
allow for a nonzero bispectrum of the lensing potential.

Similarly to the lensing power spectrum, the lensing
bispectrum is a projection of the bispectrum of density
perturbations Bδðk1;k2;−k1 − k2; χÞ:

Bϕðl1; l2; l3Þ ¼ −
Z

χ'

0
dχχ28WðχÞ3 γðχÞ3

ðl1l2l3Þ2

× Bδðl1=χ; l2=χ; l3=χ; χÞ: ð16Þ

As summarized in Appendix A, this follows by applying
the Fourier space analogue of Limber’s equation for
bispectra (see e.g., [41,42]). On very large scales, we
expect the flat-sky and the Limber approximations that
we assume to break down. The lensing power spectrum is
overestimated on large scales in the Limber approximation
and the bispectrum could be affected similarly. We will
therefore only consider multipoles L > 100.
The bispectrum of matter perturbations can be modeled

by standard Eulerian perturbation theory, which gives at
leading order in the linear matter overdensity (see [43] for a
review),

Bδðk1;k2;k3; ηÞ ¼ 2F2ðk1;k2ÞPδðk1; ηÞPδðk2; ηÞ
þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ: ð17Þ

This is quadratic in the linear matter power spectrumPδ and
involves the symmetrized kernel,

F2ðki;kjÞ ¼
5

7
þ 1

2

!
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kj

þ
kj
ki

"
k̂i · k̂j þ

2

7
ðk̂i · k̂jÞ2; ð18Þ

where k̂i ¼ ki=jkij. The simple bispectrum model (17) is
only accurate on relatively large scales that are under
perturbative control (roughly k≲ 0.07h=Mpc at z ¼ 0, see
e.g., [44] for a recent study). It can be extended to smaller,
nonlinear scales by including higher-order (loop) correc-
tions. A simpler phenomenological modification that
extends the range of validity to slightly smaller scales
can be obtained by replacing PδðkÞ with a matter power
spectrum with nonlinear corrections, Pnl

δ ðkÞ, in Eq. (17)
[45]. On smaller scales, that cannot be modeled analyti-
cally, one needs to resort to fitting formulae calibrated
against simulations.

B. Lensing reconstruction

For a fixed lensing potential, the effect of lensing is to
introduce a correlation between different modes of the
temperature field, which in the unlensed case are indepen-
dent. The resulting nondiagonal terms in the 2-point
correlator of the CMB in harmonic space can be used to
construct a quadratic lensing reconstruction estimator
[46,47], which can be written on the flat sky as
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the tree-level LSS bispectrum and the bottom row shows the non-linear fit of Scoccimarro and Couchman [41] (“SC”). The left plots show the
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the equilateral limit, the tree-level LSS bispectrum is enhanced by a factor of ⇠ 2 by the post-Born corrections and the non-linear SC LSS
bispectrum by a factor of ⇠ 1.5.

This agrees with the galaxy lensing result of Ref. [10] when restricted to observing the convergence (trace of the distortion
tensor) directly.

Non-linear structure growth will also give additional contributions from the large-scale structure bispectrum, which in the
Limber approximation has the form [42]
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The potential bispectrum on the right-hand side of this equation can be approximated by the tree-level result for the fractional
matter density perturbations [43]:

b���(k1, k2, k3;�) = 2F2(k1,k2; z)P��(k1, z(�))P��(k2, z(�)) + cyc. perm., (4.8)

where
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and k2 (k, z) ⇡ ��(z)�(k, z) with �(z) ⇡ k2
p
P  (k, z)/P��(k, z) approximately independent of k. The baseline tree-level

result has A = B = C = 1 in Eq. (4.9), so that F2 is independent of redshift, but even in this case we use the non-linear P��

from halofit to improve accuracy [41]. We also consider extended fitting formulae for A, B and C from Scoccimarro and
Couchman [41] (denoted “SC”) to assess the order of magnitude of fully non-linear corrections beyond tree level5

5 We use a dewiggled form for n ⌘ d lnP��,lin/d ln k in the fitting function following Ref. [44]. Ref. [44] (“GM”) also provide updated fits, but they are
not validated at high redshift and may behave in an unphysical way there, so we restrict to the original fit of Ref. [41]. Using the updated fits would slightly
increase the LSS bispectrum signal, but not change results qualitatively. At L = 1000 the equilateral lensing bispectrum is enhanced by ⇡ 2⇥ compared
to tree level using the SC fit, and ⇡ 2.5⇥ in the GM fit, but the difference is much less for folded configurations (where the non-linear enhancement at
L
1

= 1000 is less than 20%).
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Throughout the paper, we will use the convention that the
differential operator ∇ is only applied to the object directly
following it. Applications on composite objects will be
indicated by brackets. In harmonic space, products turn into
convolutions and gradients correspond to multiplication
with −il, so that

~TðlÞ ¼ TðlÞ þ δTðlÞ þ δ2TðlÞ þOðϕ3Þ ð9Þ

with OðϕÞ correction,
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All perturbations are linear in the unlensed temperature T.
The lensing potential is a weighted projection of the

gravitational potential ψ along the line of sight,

ϕðn̂Þ ¼ 2

Z
χ'

0
dχWðχÞψðχn̂; ηðχÞÞ ð12Þ

where χ denotes the comoving angular diameter distance,
W the lensing efficiency and η the conformal time. In a flat
Universe, which is assumed here, the lensing efficiency
simplifies to

WðχÞ ¼ −
χ' − χ
χ'χ

; ð13Þ

where an asterisk is used to mark quantities at decoupling.
This description of CMB lensing relies on the Born
approximation, which assumes that the integration can
be carried out along the unperturbed photon geodesic.
Commonly, the lensing potential is modeled as a

homogeneous Gaussian random field, which is solely
characterized by its power spectrum. This power spectrum
is well described by a Limber projection of the power
spectrum of matter fluctuations, Pδðk; ηÞ,

Cϕϕ
L ¼

Z
χ'

0
dχ

4WðχÞ2

χ2
γðχÞ2

ðL=χÞ4
PδðL=χ; χÞ; ð14Þ

where
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H2
0Ωm0

c2aðχÞ
: ð15Þ

In this work, we drop the assumption of Gaussianity and
allow for a nonzero bispectrum of the lensing potential.

Similarly to the lensing power spectrum, the lensing
bispectrum is a projection of the bispectrum of density
perturbations Bδðk1;k2;−k1 − k2; χÞ:

Bϕðl1; l2; l3Þ ¼ −
Z

χ'

0
dχχ28WðχÞ3 γðχÞ3

ðl1l2l3Þ2

× Bδðl1=χ; l2=χ; l3=χ; χÞ: ð16Þ

As summarized in Appendix A, this follows by applying
the Fourier space analogue of Limber’s equation for
bispectra (see e.g., [41,42]). On very large scales, we
expect the flat-sky and the Limber approximations that
we assume to break down. The lensing power spectrum is
overestimated on large scales in the Limber approximation
and the bispectrum could be affected similarly. We will
therefore only consider multipoles L > 100.
The bispectrum of matter perturbations can be modeled

by standard Eulerian perturbation theory, which gives at
leading order in the linear matter overdensity (see [43] for a
review),

Bδðk1;k2;k3; ηÞ ¼ 2F2ðk1;k2ÞPδðk1; ηÞPδðk2; ηÞ
þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ: ð17Þ

This is quadratic in the linear matter power spectrumPδ and
involves the symmetrized kernel,
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where k̂i ¼ ki=jkij. The simple bispectrum model (17) is
only accurate on relatively large scales that are under
perturbative control (roughly k≲ 0.07h=Mpc at z ¼ 0, see
e.g., [44] for a recent study). It can be extended to smaller,
nonlinear scales by including higher-order (loop) correc-
tions. A simpler phenomenological modification that
extends the range of validity to slightly smaller scales
can be obtained by replacing PδðkÞ with a matter power
spectrum with nonlinear corrections, Pnl

δ ðkÞ, in Eq. (17)
[45]. On smaller scales, that cannot be modeled analyti-
cally, one needs to resort to fitting formulae calibrated
against simulations.

B. Lensing reconstruction

For a fixed lensing potential, the effect of lensing is to
introduce a correlation between different modes of the
temperature field, which in the unlensed case are indepen-
dent. The resulting nondiagonal terms in the 2-point
correlator of the CMB in harmonic space can be used to
construct a quadratic lensing reconstruction estimator
[46,47], which can be written on the flat sky as

ϕ̂ðLÞ ¼ AL

Z

l
gðl;LÞ ~TexptðlÞ ~TexptðL − lÞ; ð19Þ
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where k̂i ¼ ki=jkij. The simple bispectrum model (17) is
only accurate on relatively large scales that are under
perturbative control (roughly k≲ 0.07h=Mpc at z ¼ 0, see
e.g., [44] for a recent study). It can be extended to smaller,
nonlinear scales by including higher-order (loop) correc-
tions. A simpler phenomenological modification that
extends the range of validity to slightly smaller scales
can be obtained by replacing PδðkÞ with a matter power
spectrum with nonlinear corrections, Pnl

δ ðkÞ, in Eq. (17)
[45]. On smaller scales, that cannot be modeled analyti-
cally, one needs to resort to fitting formulae calibrated
against simulations.
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For a fixed lensing potential, the effect of lensing is to
introduce a correlation between different modes of the
temperature field, which in the unlensed case are indepen-
dent. The resulting nondiagonal terms in the 2-point
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This agrees with the galaxy lensing result of Ref. [10] when restricted to observing the convergence (trace of the distortion
tensor) directly.

Non-linear structure growth will also give additional contributions from the large-scale structure bispectrum, which in the
Limber approximation has the form [42]
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The potential bispectrum on the right-hand side of this equation can be approximated by the tree-level result for the fractional
matter density perturbations [43]:
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result has A = B = C = 1 in Eq. (4.9), so that F2 is independent of redshift, but even in this case we use the non-linear P��

from halofit to improve accuracy [41]. We also consider extended fitting formulae for A, B and C from Scoccimarro and
Couchman [41] (denoted “SC”) to assess the order of magnitude of fully non-linear corrections beyond tree level5

5 We use a dewiggled form for n ⌘ d lnP��,lin/d ln k in the fitting function following Ref. [44]. Ref. [44] (“GM”) also provide updated fits, but they are
not validated at high redshift and may behave in an unphysical way there, so we restrict to the original fit of Ref. [41]. Using the updated fits would slightly
increase the LSS bispectrum signal, but not change results qualitatively. At L = 1000 the equilateral lensing bispectrum is enhanced by ⇡ 2⇥ compared
to tree level using the SC fit, and ⇡ 2.5⇥ in the GM fit, but the difference is much less for folded configurations (where the non-linear enhancement at
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3. The top row shows
the tree-level LSS bispectrum and the bottom row shows the non-linear fit of Scoccimarro and Couchman [41] (“SC”). The left plots show the
post-Born contributions, the middle plots the large-scale structure contributions and the right plots the cancellations that occur due to negative
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. For approximately equilateral
configurations, i.e. L

1

⇠ L
2

⇠ L
3
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The potential bispectrum on the right-hand side of this equation can be approximated by the tree-level result for the fractional
matter density perturbations [43]:
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not validated at high redshift and may behave in an unphysical way there, so we restrict to the original fit of Ref. [41]. Using the updated fits would slightly
increase the LSS bispectrum signal, but not change results qualitatively. At L = 1000 the equilateral lensing bispectrum is enhanced by ⇡ 2⇥ compared
to tree level using the SC fit, and ⇡ 2.5⇥ in the GM fit, but the difference is much less for folded configurations (where the non-linear enhancement at
L
1

= 1000 is less than 20%).

Throughout the paper, we will use the convention that the
differential operator ∇ is only applied to the object directly
following it. Applications on composite objects will be
indicated by brackets. In harmonic space, products turn into
convolutions and gradients correspond to multiplication
with −il, so that

~TðlÞ ¼ TðlÞ þ δTðlÞ þ δ2TðlÞ þOðϕ3Þ ð9Þ

with OðϕÞ correction,
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All perturbations are linear in the unlensed temperature T.
The lensing potential is a weighted projection of the

gravitational potential ψ along the line of sight,

ϕðn̂Þ ¼ 2

Z
χ'

0
dχWðχÞψðχn̂; ηðχÞÞ ð12Þ

where χ denotes the comoving angular diameter distance,
W the lensing efficiency and η the conformal time. In a flat
Universe, which is assumed here, the lensing efficiency
simplifies to

WðχÞ ¼ −
χ' − χ
χ'χ

; ð13Þ

where an asterisk is used to mark quantities at decoupling.
This description of CMB lensing relies on the Born
approximation, which assumes that the integration can
be carried out along the unperturbed photon geodesic.
Commonly, the lensing potential is modeled as a

homogeneous Gaussian random field, which is solely
characterized by its power spectrum. This power spectrum
is well described by a Limber projection of the power
spectrum of matter fluctuations, Pδðk; ηÞ,

Cϕϕ
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dχ
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where

γðχÞ≡ 3

2

H2
0Ωm0

c2aðχÞ
: ð15Þ

In this work, we drop the assumption of Gaussianity and
allow for a nonzero bispectrum of the lensing potential.

Similarly to the lensing power spectrum, the lensing
bispectrum is a projection of the bispectrum of density
perturbations Bδðk1;k2;−k1 − k2; χÞ:

Bϕðl1; l2; l3Þ ¼ −
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× Bδðl1=χ; l2=χ; l3=χ; χÞ: ð16Þ

As summarized in Appendix A, this follows by applying
the Fourier space analogue of Limber’s equation for
bispectra (see e.g., [41,42]). On very large scales, we
expect the flat-sky and the Limber approximations that
we assume to break down. The lensing power spectrum is
overestimated on large scales in the Limber approximation
and the bispectrum could be affected similarly. We will
therefore only consider multipoles L > 100.
The bispectrum of matter perturbations can be modeled

by standard Eulerian perturbation theory, which gives at
leading order in the linear matter overdensity (see [43] for a
review),

Bδðk1;k2;k3; ηÞ ¼ 2F2ðk1;k2ÞPδðk1; ηÞPδðk2; ηÞ
þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ: ð17Þ

This is quadratic in the linear matter power spectrumPδ and
involves the symmetrized kernel,
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where k̂i ¼ ki=jkij. The simple bispectrum model (17) is
only accurate on relatively large scales that are under
perturbative control (roughly k≲ 0.07h=Mpc at z ¼ 0, see
e.g., [44] for a recent study). It can be extended to smaller,
nonlinear scales by including higher-order (loop) correc-
tions. A simpler phenomenological modification that
extends the range of validity to slightly smaller scales
can be obtained by replacing PδðkÞ with a matter power
spectrum with nonlinear corrections, Pnl

δ ðkÞ, in Eq. (17)
[45]. On smaller scales, that cannot be modeled analyti-
cally, one needs to resort to fitting formulae calibrated
against simulations.

B. Lensing reconstruction

For a fixed lensing potential, the effect of lensing is to
introduce a correlation between different modes of the
temperature field, which in the unlensed case are indepen-
dent. The resulting nondiagonal terms in the 2-point
correlator of the CMB in harmonic space can be used to
construct a quadratic lensing reconstruction estimator
[46,47], which can be written on the flat sky as

ϕ̂ðLÞ ¼ AL

Z

l
gðl;LÞ ~TexptðlÞ ~TexptðL − lÞ; ð19Þ
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tions. A simpler phenomenological modification that
extends the range of validity to slightly smaller scales
can be obtained by replacing PδðkÞ with a matter power
spectrum with nonlinear corrections, Pnl
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[45]. On smaller scales, that cannot be modeled analyti-
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For a fixed lensing potential, the effect of lensing is to
introduce a correlation between different modes of the
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e.g., [44] for a recent study). It can be extended to smaller,
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extends the range of validity to slightly smaller scales
can be obtained by replacing PδðkÞ with a matter power
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[45]. On smaller scales, that cannot be modeled analyti-
cally, one needs to resort to fitting formulae calibrated
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For a fixed lensing potential, the effect of lensing is to
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temperature field, which in the unlensed case are indepen-
dent. The resulting nondiagonal terms in the 2-point
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where ~Texpt are beam-deconvolved noisy temperature
fluctuations. The observed temperature fluctuations are
assumed to contain white noise and a Gaussian beam, so
that the final power spectrum is

C ~T ~T
l;expt ¼ C ~T ~T

l þ σ2N exp ½lðlþ 1Þθ2FWHM=ð8 ln 2Þ&; ð20Þ

where the instrumental noise level is specified by σ2N and
the beam size is given in terms of the full width at half-
maximum (FWHM) θFWHM. The weight g in Eq. (19) is
chosen such that the variance of the estimator is minimized
[21,48,49],

gðl;LÞ ¼
ðL − lÞ ·LC ~T ~T

jL−lj þ l ·LC ~T ~T
l

2C ~T ~T
l;exptC

~T ~T
jL−lj;expt

: ð21Þ

Note that gðL − l;LÞ ¼ gðl;LÞ ¼ gð−l;−LÞ. The nor-
malization is given by

A−1
L ¼ 2

Z

l
gðl;LÞl ·LC ~T ~T

l : ð22Þ

The power spectrum of the lensing reconstruction (19)
involves the lensed temperature 4-point function,

hϕ̂ðLÞϕ̂ð−LÞi ¼ A2
L

Z

l1

Z

l2
gðl1;LÞgðl2;LÞh ~Texptðl1Þ

× ~TexptðL − l1Þ ~Texptð−l2Þ ~Texptðl2 −LÞi:
ð23Þ

This 4-point function can be split into a disconnected part,
obtained by contracting two pairs of lensed temperature
fields with each other, and a connected part, given by the
full 4-point function minus the disconnected part. The
disconnected part leads to the Nð0Þ power spectrum bias,
which would be present even for Gaussian temperature
fluctuations in absence of lensing. It is called Nð0Þ because
it is of zeroth order in Cϕϕ.1 Note Nð0Þ

L ¼ AL (a conse-
quence of optimal weighting). The connected part of the
4-point function in Eq. (23) leads to the desired signal
contribution Cϕϕ

L . Additionally, it gives rise to the Nð1Þ bias
which is also of order Cϕϕ [21,22,50]. The expectation
value of the measured lensing power spectrum is, therefore,

hCϕ̂ ϕ̂
L i ¼ Nð0Þ

L þ Cϕϕ
L þ Nð1Þ

L þO½ðCϕϕÞ3& ðGaussianϕÞ
ð24Þ

if the lensing potential ϕ is assumed to be Gaussian. To
obtain an unbiased estimator for the signal Cϕϕ, the Nð0Þ

and Nð1Þ biases are calculated (typically using simulations
or simulation-data combinations) and subtracted from the
measured lensing power.

III. EFFECT OF LENSING BISPECTRUM ON
MEASURED LENSING POWER SPECTRUM

A. Overview

We now drop the assumption that the lensing potential
ϕ is Gaussian. In this case, n-point functions with an odd
number of lensing potentials no longer need to vanish,
and n-point functions no longer need be determined by
the Gaussian 2-point power spectrum Cϕϕ alone. We
consider only a nonzero 3-point function or bispectrum,
and ignore corrections from all higher-order n-point
functions. This approximation is motivated by the spe-
cific non-Gaussianity generated by large-scale structure
modes in the mildly nonlinear regime relevant for CMB
lensing. For simplicity we ignore the ISW effect and its
induced correlations like hTϕi and hTTϕi, but note that
accounting for it may lead to additional biases that should
be investigated in the future. We also assume that the
unlensed CMB is a Gaussian field.
Allowing a nonzero lensing potential bispectrum Bϕ,

the lensed temperature 4-point function entering the
expectation value for the measured lensing power spec-
trum (23) picks up additional contractions that would
vanish for a Gaussian lensing potential. For example,
using the Taylor expansion (8), one new allowed con-
traction is of the form

ð25Þ

where subscripts denote gradients T;i ¼ ∇iT and
ϕ;i ¼ ∇iϕ. Since the lensing change δnT is of order
ϕn and linear in the unlensed temperature T, there are
four qualitatively different contraction types that arise for
the measured lensing power spectrum (23) at order ϕ3:

typeA∶ hδTδTδT 0T 0i typeB∶ hδ2TδTT 0T 0i
typeC∶ hδ2TTδT 0T 0i typeD∶ hδ3TTT 0T 0i: ð26Þ

The last two temperature fields are labeled with primes to
indicate that they correspond to the second reconstruction
field ϕ̂ð−LÞ in Eq. (23); quantities without primes
correspond to the first reconstruction field ϕ̂ðLÞ.2
Each type of terms allows several Wick’s theorem

contractions. For example, for type A there are three
contractions that we label A1, A2, and A3:

1We follow the common power-counting practice where only
explicit appearances of Cϕϕ are counted that are not contained in
lensing contributions to C ~T ~T .

2In position space, this corresponds to reconstructed lenses at
two different positions x and x0 on the sky; also see Appendix E.
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ð27Þ

Similarly, the type-B term has three contractions B1, B2, and B3,

ð28Þ

and the type C term has contributions C1, C2, and C3:

ð29Þ

We omit the type-D terms here as these can be shown to be
zero.
In our paper, we evaluate the A1 and C1 terms numeri-

cally and focus on them in the main text. We focus on these
terms both because they are expected to be among the
largest and because they allow for numerical evaluation
on reasonable timescales. In contrast, as discussed in
Appendix C, the B1 term is zero, and the A2 and A3
terms are tightly coupled, which makes numerical evalu-
ation difficult and time-consuming (the integrals are six-
dimensional), but also suggests that these terms are small.
Furthermore, the C2 term should be naturally accounted for
in the (realization-dependent) calculations of the Nð0Þ bias,
which is included in modern lensing pipelines. We defer a
full evaluation of the remaining B2, B3, and C3 terms to
future work; we note that if they have a similar order of
magnitude to A1þ C1, our approximate calculation might
underestimate the true bias.
The new contractions allowed by a nonzero lensing

bispectrum lead to a new bias Nð3=2Þ
L;tot of the measured

4-point lensing power spectrum,

hCϕ̂ ϕ̂
L i ¼ Nð0Þ

L þ Cϕϕ
L þ Nð1Þ

L þ Nð3=2Þ
L;tot þO½ðCϕϕÞ5=2&

ðnon-GaussianϕÞ: ð30Þ

We call the new non-Gaussian reconstruction bias Nð3=2Þ

because it scales like ϕ3 ∝ ðCϕϕÞ3=2, and previously con-
sidered biases like Nð0Þ and Nð1Þ were labeled by the power
of Cϕϕ they involve. The total Nð3=2Þ bias is a sum over all
possible 4-point contractions listed above,

Nð3=2Þ
tot ¼ ðNð3=2Þ

A1 þ Nð3=2Þ
C1 Þ þ Nð3=2Þ

A2 þ Nð3=2Þ
A3 þ Nð3=2Þ

B2

þ Nð3=2Þ
B3 þ Nð3=2Þ

C2 þ Nð3=2Þ
C3 : ð31Þ

where as explained previously we focus here on the A1 and
C1 terms in parentheses.

The A1 and C1 bias terms in Eqs. (27) and (29) have a
simple intuitive interpretation: They arise because the
quadratic response of the lensing reconstruction ϕ̂ðLÞ to
the true lensing potential ϕ is correlated with the linear
response of the lensing reconstruction ϕ̂ð−LÞ to the true
lensing potential ϕ0. This correlation involves the 3-point
correlation function hϕϕϕ0i of the true lensing potential,
which is nonzero in presence of nonlinear gravitational
clustering.
We proceed by discussing these A1 and C1 terms, which

contribute substantially to the total bias (31), in detail.
Analytical expressions for the remaining bias contributions
are given in Appendix C.

B. A1 contribution to the Nð3=2Þ bias

We begin by computing the lensing bias from the
contraction A1 in Eq. (27). This contraction is given by

hδTl1δTl2δTl3Tl4iA1
¼ −ð2πÞ2δDðl1 þ l2 þ l3 þ l4ÞCTT

l4
½ðl3 þ l4Þ · l4&

×
Z

l
½l · ðl1 − lÞ&½l · ðl2 þ lÞ&

× CTT
l Bϕðl1 − l; l2 þ l;−l1 − l2Þ; ð32Þ

where we used the Fourier space expression (10) for the
first-order temperature change δT due to lensing, and
contracted temperature and lensing fields as indicated for
the A1 term in Eq. (27).3 Inserting this into Eq. (23) yields
the following A1 bias of the measured lensing power
spectrum:

3For Gaussian instrument noise that is uncorrelated
with the signal, all contributions to the four point correlator
h ~Texpt

l1
~Texpt
l2

~Texpt
l3

~Texpt
l4

i that involve instrument noise either vanish
or contribute to the Gaussian noise bias. This justifies ignoring
instrument noise in the calculation of the connected four point
contributions to Nð3=2Þ.
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This agrees with the galaxy lensing result of Ref. [10] when restricted to observing the convergence (trace of the distortion
tensor) directly.

Non-linear structure growth will also give additional contributions from the large-scale structure bispectrum, which in the
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The potential bispectrum on the right-hand side of this equation can be approximated by the tree-level result for the fractional
matter density perturbations [43]:

b���(k1, k2, k3;�) = 2F2(k1,k2; z)P��(k1, z(�))P��(k2, z(�)) + cyc. perm., (4.8)

where
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and k2 (k, z) ⇡ ��(z)�(k, z) with �(z) ⇡ k2
p
P  (k, z)/P��(k, z) approximately independent of k. The baseline tree-level

result has A = B = C = 1 in Eq. (4.9), so that F2 is independent of redshift, but even in this case we use the non-linear P��

from halofit to improve accuracy [41]. We also consider extended fitting formulae for A, B and C from Scoccimarro and
Couchman [41] (denoted “SC”) to assess the order of magnitude of fully non-linear corrections beyond tree level5

5 We use a dewiggled form for n ⌘ d lnP��,lin/d ln k in the fitting function following Ref. [44]. Ref. [44] (“GM”) also provide updated fits, but they are
not validated at high redshift and may behave in an unphysical way there, so we restrict to the original fit of Ref. [41]. Using the updated fits would slightly
increase the LSS bispectrum signal, but not change results qualitatively. At L = 1000 the equilateral lensing bispectrum is enhanced by ⇡ 2⇥ compared
to tree level using the SC fit, and ⇡ 2.5⇥ in the GM fit, but the difference is much less for folded configurations (where the non-linear enhancement at
L
1

= 1000 is less than 20%).
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Throughout the paper, we will use the convention that the
differential operator ∇ is only applied to the object directly
following it. Applications on composite objects will be
indicated by brackets. In harmonic space, products turn into
convolutions and gradients correspond to multiplication
with −il, so that

~TðlÞ ¼ TðlÞ þ δTðlÞ þ δ2TðlÞ þOðϕ3Þ ð9Þ

with OðϕÞ correction,

δTðlÞ ¼ −
Z

l0
l0 · ðl − l0ÞTðl0Þϕðl − l0Þ; ð10Þ

and Oðϕ2Þ correction
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½l0 · l00&½l0 · ðl − l0 − l00Þ&

× Tðl0Þϕðl00Þϕðl − l0 − l00Þ: ð11Þ

All perturbations are linear in the unlensed temperature T.
The lensing potential is a weighted projection of the

gravitational potential ψ along the line of sight,

ϕðn̂Þ ¼ 2

Z
χ'

0
dχWðχÞψðχn̂; ηðχÞÞ ð12Þ

where χ denotes the comoving angular diameter distance,
W the lensing efficiency and η the conformal time. In a flat
Universe, which is assumed here, the lensing efficiency
simplifies to

WðχÞ ¼ −
χ' − χ
χ'χ

; ð13Þ

where an asterisk is used to mark quantities at decoupling.
This description of CMB lensing relies on the Born
approximation, which assumes that the integration can
be carried out along the unperturbed photon geodesic.
Commonly, the lensing potential is modeled as a

homogeneous Gaussian random field, which is solely
characterized by its power spectrum. This power spectrum
is well described by a Limber projection of the power
spectrum of matter fluctuations, Pδðk; ηÞ,

Cϕϕ
L ¼

Z
χ'

0
dχ

4WðχÞ2

χ2
γðχÞ2

ðL=χÞ4
PδðL=χ; χÞ; ð14Þ

where

γðχÞ≡ 3

2

H2
0Ωm0

c2aðχÞ
: ð15Þ

In this work, we drop the assumption of Gaussianity and
allow for a nonzero bispectrum of the lensing potential.

Similarly to the lensing power spectrum, the lensing
bispectrum is a projection of the bispectrum of density
perturbations Bδðk1;k2;−k1 − k2; χÞ:

Bϕðl1; l2; l3Þ ¼ −
Z

χ'

0
dχχ28WðχÞ3 γðχÞ3

ðl1l2l3Þ2

× Bδðl1=χ; l2=χ; l3=χ; χÞ: ð16Þ

As summarized in Appendix A, this follows by applying
the Fourier space analogue of Limber’s equation for
bispectra (see e.g., [41,42]). On very large scales, we
expect the flat-sky and the Limber approximations that
we assume to break down. The lensing power spectrum is
overestimated on large scales in the Limber approximation
and the bispectrum could be affected similarly. We will
therefore only consider multipoles L > 100.
The bispectrum of matter perturbations can be modeled

by standard Eulerian perturbation theory, which gives at
leading order in the linear matter overdensity (see [43] for a
review),

Bδðk1;k2;k3; ηÞ ¼ 2F2ðk1;k2ÞPδðk1; ηÞPδðk2; ηÞ
þ ð1 ↔ 3Þ þ ð2 ↔ 3Þ: ð17Þ

This is quadratic in the linear matter power spectrumPδ and
involves the symmetrized kernel,

F2ðki;kjÞ ¼
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7
þ 1
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!
ki
kj

þ
kj
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"
k̂i · k̂j þ

2

7
ðk̂i · k̂jÞ2; ð18Þ

where k̂i ¼ ki=jkij. The simple bispectrum model (17) is
only accurate on relatively large scales that are under
perturbative control (roughly k≲ 0.07h=Mpc at z ¼ 0, see
e.g., [44] for a recent study). It can be extended to smaller,
nonlinear scales by including higher-order (loop) correc-
tions. A simpler phenomenological modification that
extends the range of validity to slightly smaller scales
can be obtained by replacing PδðkÞ with a matter power
spectrum with nonlinear corrections, Pnl

δ ðkÞ, in Eq. (17)
[45]. On smaller scales, that cannot be modeled analyti-
cally, one needs to resort to fitting formulae calibrated
against simulations.

B. Lensing reconstruction

For a fixed lensing potential, the effect of lensing is to
introduce a correlation between different modes of the
temperature field, which in the unlensed case are indepen-
dent. The resulting nondiagonal terms in the 2-point
correlator of the CMB in harmonic space can be used to
construct a quadratic lensing reconstruction estimator
[46,47], which can be written on the flat sky as

ϕ̂ðLÞ ¼ AL

Z

l
gðl;LÞ ~TexptðlÞ ~TexptðL − lÞ; ð19Þ
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can be obtained by replacing PδðkÞ with a matter power
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e.g., [44] for a recent study). It can be extended to smaller,
nonlinear scales by including higher-order (loop) correc-
tions. A simpler phenomenological modification that
extends the range of validity to slightly smaller scales
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where fWX is the lensing-induced coupling between Fourier modes and gWX is an optimal
filtering weight. Explicit expressions for both these quantities can be found in [32]. The
unlensed spectra appearing in fWX , gWX are replaced by lensed ones to avoid the N (2) bias
[36], and we use the separable (but somewhat suboptimal) where CTE

` is set to zero in the
weights gTE . In the last equation the tilde denotes lensed quantities and expt subscript
indicates observed quantities.

A.3 Cross-correlation N (3/2)
bias

The cross-correlation hˆ��
ext

i between the reconstructed CMB lensing potential ˆ� with an
external LSS tracer �

ext

as well as its auto-correlation is sensitive to the presence of a non-
zero bispectrum in the lensing potential generated by nonlinear structure formation and post-
Born corrections. Hereafter we assume that the external LSS tracer is uncorrelated with the
unlensed CMB (i.e. we neglect correlation induced by the Integrated Sachs-Wolfe (ISW),
SZ and other effects). This should be a good approximation if the CMB maps have been
adequately cleaned of non=primordial contributions. We will also assume that there are no
primordial B-modes, i.e. B (l) = 0. The detailed shape of N

(3/2)
L bias in cross-correlation

depends on the quadratic combination used to reconstruct CMB lensing. Ref. [25] derived
expressions for the TT estimator and we extend the calculation to the general reconstruction
estimators below. We use the flat sky approximation for analytic results, which should be
adequate on scales where there is sufficient signal to noise for the bias to be important. The
leading effect of non-Gaussianity is expected to come from the bispectrum, and we neglect
other higher-order correlators.

The N
(3/2)
L bias on the cross-power spectrum C

ˆ�WX�
ext

L will depend on terms of the form

h ˜W ˜X�
ext

iO[(C��
)

3/2
]

= h�W �X�
ext

i+ hW �2X�
ext

i+ h�2WX�
ext

i. (A.13)

Following Ref. [25] the first term on the right hand side is called “A1”, and the second two terms
“C1”. These are all contractions allowed for the cross-spectrum, so that the full expression
for the cross-spectrum up to fifth order in LSS perturbations is4

hC ˆ�WX�
ext

L i = C��
ext

L +N
(3/2)
A1,WX

(L) +N
(3/2)
C1,WX

(L) +O(�5

), (A.14)

where the new bispectrum-induced biases are
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4
An additional N (2)

bias of order (C��)2 also arises, but is approximately removed by using lensed CMB

power spectra in the normalization AL and in the weights g [36, 38].
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where fWX is the lensing-induced coupling between Fourier modes and gWX is an optimal
filtering weight. Explicit expressions for both these quantities can be found in [32]. The
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[36], and we use the separable (but somewhat suboptimal) where CTE

` is set to zero in the
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as well as its auto-correlation is sensitive to the presence of a non-
zero bispectrum in the lensing potential generated by nonlinear structure formation and post-
Born corrections. Hereafter we assume that the external LSS tracer is uncorrelated with the
unlensed CMB (i.e. we neglect correlation induced by the Integrated Sachs-Wolfe (ISW),
SZ and other effects). This should be a good approximation if the CMB maps have been
adequately cleaned of non=primordial contributions. We will also assume that there are no
primordial B-modes, i.e. B (l) = 0. The detailed shape of N

(3/2)
L bias in cross-correlation

depends on the quadratic combination used to reconstruct CMB lensing. Ref. [25] derived
expressions for the TT estimator and we extend the calculation to the general reconstruction
estimators below. We use the flat sky approximation for analytic results, which should be
adequate on scales where there is sufficient signal to noise for the bias to be important. The
leading effect of non-Gaussianity is expected to come from the bispectrum, and we neglect
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N3/2 and cosmological parameters estimation
• Bias on cosmological parameters at 1-2 sigma if unaccounted: neutrino mass 

more affected!

• Data set combination more robust but possible inconsistencies due to N3/2

• Effect dependent on lensing reconstruction channel: polarization less affected

Beck, Fabbian, 
Errard (2018)
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Coherent CMB lensing - LSS simulations
• Percent level agreement with semi-analytical models for non-linear matter 

power spectrum. 
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Fabbian, Lewis, Beck (2019)
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Cross-correlation with external tracers for S4
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Fabbian, 
Lewis et al. 

(in prep.)
Fabbian, 

Lewis, Beck 
(2019)
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 N3/2 detection prospects
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• Mimics intrinsic alignment on shear-CMB lensing correlation, prevent correct 
systematic marginalization (Hall & Taylor, Larsen & Challinor)

Eu
cl

id
 /

LS
ST

Eu
cl

id
 /

LS
ST

�A
IA

z = 0.20 z = 0.35 z = 0.60 z = 1.00 z = 2.00

TT 0.02± 0.07 0.09± 0.07 0.27± 0.07 0.57± 0.08 1.08± 0.11
EB 0.00± 0.7 0.00± 0.07 0.01± 0.07 0.02± 0.08 0.05± 0.10
MV 0.01± 0.06 0.03± 0.06 0.10± 0.06 0.21± 0.07 0.42± 0.08

Table 3: Values of the bias in terms of galaxy intrinsic alignment amplitude A
IA

induced by
an unmodelled N

(3/2)
L assuming S4-like noise in the CMB and 3 gal/arcmin2 in each redshift

bin. The theory expectation including N
(3/2)
L is calculated using the SC fit to the non-linear

matter bispectrum, neglecting IA contributions to the bispectrum.

the increase of detection significance would be marginal (less than 0.5�). Nevertheless, the
analytic predictions we developed allow N

(3/2)
L to be modelled with sufficient precision. The

detection significance of the residual between our theoretical predictions and the simulation
measurements is in fact always below 1� for both S4 and SO, for all the tracers and at all
redshifts even assuming a galaxy survey with no shot-noise (see dashed lines in Figs. 16,
1513). As such no statistically significant effect of N (3/2)

L should be observed in a consistent
analysis of future experiments. However, in the case where multiple redshift bins are com-
bined using the full covariance for all the tracers, partial cosmic variance cancellation could
make the residual more important and would deserve more detailed investigation.

5 Conclusions

Forthcoming CMB observations will make CMB lensing maps at high signal to noise on large
scales, and allow powerful statistical measurements of the power spectrum and cross-power
spectra to small scales. For Gaussian fields, lensing cross-correlation estimators can be con-
structed that are exactly unbiased in a given fiducial model. However, the cross-correlation
spectra are also sensitive to contributions from the bispectrum of large-scale structure and
post-Born lensing, which we have calculated and simulated in detail. We have shown that the
bispectrum contribution will be important for future data, and can potentially be detected
at many sigma, depending on exactly what range of small-scale CMB temperature data are
used. We showed that simple analytic models fit the results from full ray-traced simulations
rather well, so that the error in modelling the signal analytically should be negligible for the
foreseeable future. Future analyses must however include the N

(3/2)
L bias model to obtain

unbiased results.
The size of the N

(3/2)
L bias for cross-correlations depends on the redshift and tracer that is

used. For high-redshift lensing tracers there is a partial cancellation between the bispec-
trum bias from post-Born lensing and large-scale structure growth. Including both terms is
therefore important to obtain correct results. If the effect is modelled via simulations, the
simulations should self-consistently include the post-Born lensing effect, otherwise the bias
may be overestimated. At lower redshift the post-Born signal decreases due to the decreased
path length and the large-scale structure bispectrum grows, so there is relatively less cancel-
lation. However, the fractional bias decreases at very low redshift due to suppression by the
CMB lensing window function, so the bias remains relatively small (. 10%) for all redshifts,

13For both these figures we did not show the residual for the SO EB estimator since simulation results are
noisy and consistent with no N (3/2)

L detection.
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 N3/2 detection prospects - II

 18

• High significance detection in galaxy cross-correlation with S4 ( ~5-10𝜎)

• For SO, N3/2  will be detected in tomographic cross-correlation analysis and 
cosmic-variance cancellation regime
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Ongoing work: alternative probes

 19

• Cosmic voids: powerful probe of neutrino mass (e.g. Massara+2015). Can  
break               degeneracy with matter profile.                                                                                           

• Void profile from CMB lensing of DEMNUni simulations with massive neutrinos

• Applying pipeline to N-body simulations with non-standard cosmologies (e.g. 
MG)
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Figure 6. redshift evolution of the void imprint on the CMB convergence map

Figure 7. redshift evolution of the void imprint on the CMB convergence
map

MNRAS 000, 1–4 (2015)

Figure 5. Average total matter density profiles around voids with different sizes: Re↵=10-11
Mpc/h (top), Re↵=16-18 Mpc/h (center), and Re↵=20-25 Mpc/h (bottom). Left and right panels
show results at redshifts z = 0 and z = 1, respectively. Red, purple, blue and green lines show the
0.0, 0.15, 0.3 and 0.6 eV cosmologies, respectively. At the bottom of each panel we display the ratio
between the results from the massive neutrino cosmologies and the ⇤CDM one. The vertical dashed
black lines indicate the mean value of the void radii in the selected range and two times the same
quantity.
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Conclusions

 20

• CMB lensing and LSS cross-correlation: less systematics and 
better cosmology.

• Increased statistical power, systematics self-calibration and marginalization.

• In Euclid/LSST era we need accurate predictions.

• Theoretical modelling and approximations employed need to be well 
understood (numerical simulations as well). 

• E.g. N3/2  bias can prevent robust cosmological analysis.

• Additional synergies with SZ surveys to be explored. 

• Can constraint halo thermodynamical properties, feedback processes. 

• More detailed synergies with EUCLID currently under 
investigation. 



Name TalkName TalkGiulio Fabbian European CMB coordination 2019

Bias on lensing reconstruction from higher-order

 21

NoiselessCMB-S4
κκω+κκω

Beck, Fabbian, Errard (2018). Also Böhm et al. (2018)
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Redshift and CMB sensitivity dependencies
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Fabbian, Lewis, 
Beck (2019)
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Redshift and CMB sensitivity dependencies
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Fabbian, Lewis, 
Beck (2019)
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Coherent galaxy density simulations
• Percent level accuracy coherent galaxy density simulations for z<9.45, sub 

percent post-Born corrections (first estimate)

 23

Fabbian, Lewis, Beck (2019)
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Real space non-Gaussianities
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Lewis (2011)
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Real space non-Gaussianities

 24

3

FIG. 1: Equilateral bispectrum: a field can be decomposed into plane-wave modes, and the three components with wavevectors
that form an equilateral triangle may have di↵erent relative signs. The sign of the bispectrum tells you which combination
of signs is more likely (on average gives a positive or negative product of the three modes). A positive reduced bispectrum
corresponds to being likely to have waves combining to have strong overdensities surrounded by larger areas of milder under-
density. A negative equilateral bispectrum corresponds to being likely to have concentrated underdensities surrounded by areas
of milder overdensity. Note that in 3D the figures extend into the page, and hence the positive bispectrum corresponds to
concentrated overdense filaments surrounded by larger areas of milder underdensity.

FIG. 2: A snapshot of non-linear large-scale structure from the millennium simulations [12]. Dynamical non-linear collapse
of very dense filaments (surrounded by milder underdensities, voids) generates a large positive roughly equilateral density
bispectrum.

during the growth of large-scale structure, as shown in the famous simulation of Fig. 2. Since it is the overdensities that
are concentrated, not the underdensities, the non-linear large-scale structure density field will have a large positive
equilateral component to its bispectrum (for a perturbation theory calculation see Ref. [13]).

Of course exactly equilateral triangles are a very special case, but there are many shapes that are close to equilateral
and these will also look similar, but correspond to slightly elliptical concentrated overdensities or underdensities.
As the bispectrum triangle becomes more flattened, these turn into a line, or in 3D concentrated overdensity or
underdensity pancakes (planes); see Fig. 3. Note that shapes that are qualitatively distinct in 3D may not be after
projection into 2D: for example if an purely equilateral shape is present in 3D, projecting down to 2D will give
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Delensing external tracers

 26

• CMB lensing and LSS cross-correlation: less systematics and 
better cosmology.

• Additional statistical power and systematics self-calibration and 
marginalization.

• In upcoming high-sensitivity regime the approximations usually 
adopted for our forward modelling will break:

• N3/2  bias can prevent robust cosmological analysis. It can and has to be 
modeled in the inference sufficiently accurate.
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Figure 9: A summary of the amount of lensing B-modes power removed by di↵erent tracers for di↵erent generations of
experiments.

On the left we show the contribution from each lensing tracers. The cross-correlation among tracers is not considered and for
this reason, the sum of all the contributions can be bigger than one. The purpose is to highlight the relative importance of

each tracer.
On the right we show the power removed by LSS alone and final delensing e�ciency once CMB internal delensing is added.

Here the double-counting information is taken into account and the bars correspond to final delensing e�ciency levels.
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consider an additional cut in Galactic latitude, so as to
extract a small, extremely clean patch of sky. In par-
ticular, we construct a mask comprising a symmetric
cut around the Galactic plane of ±60� in Galactic lat-
itude, which leaves 13.4% of the sky. When combined
with the GNILC/WISE/Planck lensing masks, the re-
sulting sky fraction f

sky

= 0.109. Unless stated other-
wise, our results throughout utilize the larger sky fraction
(f

sky

= 0.425), but we occasionally consider the more
constraining mask.

We measure all auto- and cross-power spectra of the
three tracer maps using a standard pseudo-Cl estimator.
The mask is apodized before power spectrum estimation
using a Gaussian taper with FWHM = 300. We de-
convolve the mask mode-coupling matrix from the mea-
sured power spectra and correct for the beam (GNILC-
only) and pixel window functions using the MASTER
method [47]. The power spectra are measured over the
multipole range 8  l  2007, which is set by the band-
limit applied to the Planck PR2 CMB lensing map. The
final results are binned into 20 linearly spaced multipole
bins, with �l = 100.

IV. METHODOLOGY

Eq. 8 calculates the coe�cients ci of the optimal linear
combination of tracers that minimizes the residual lens-
ing B-mode. However, if we use the measured spectra to
obtain ci, the forecasted delensing performance is slightly
biased due to measurement uncertainty. In Appendix A,
we show that fluctuations in the lensing cross-spectra add
a small bias and error to the predicted residual lensing
B-mode power.

To address this issue, we fit theory models to the mea-
sured spectra and compute the coe�cients ci using the
best-fit models, thereby significantly reducing any bias
and making the delensing forecast more reliable. We
model the cross-power spectrum between the CMB lens-
ing convergence and the tracer I in the Limber approxi-
mation [48],

CI
l =

Z z⇤

0

dzH(z)

�2(z)
W(z)W I(z)P (k = l/�(z), z), (10)

where H(z) is the Hubble parameter, z⇤ is the redshift of
the last scattering surface, �(z) is the comoving distance
to redshift z, and P (k, z) is the matter power spectrum
at wavenumber k and redshift z. W is the flat-space
CMB lensing kernel,

W(z) =
3

2H(z)
⌦mH2

0

(1 + z)�(z)

 
�⇤ � �(z)

�⇤

!
, (11)

where ⌦m and H
0

are the matter density and the Hubble
parameter today, respectively.

W I is the kernel for the tracer I: the CIB, WISE, or
Planck lensing reconstruction. For the CIB map, we use
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FIG. 1: The redshift kernels (window functions) for the CMB lens-
ing convergence, the CIB map, and the WISE galaxy samples, rep-
resented by red, green, and blue solid curves, respectively. All
are normalized to a unit maximum. Assuming that the kernel for
the lensing reconstruction can be approximated as the true lens-
ing kernel, we combine all three kernels using the optimal linear
combination coe�cients ci at l = 150 (black dotted). This better
traces the true lensing field.

FIG. 2: All the measured auto- and cross-power spectra with the
best-fit theory curves. Diamonds represent the measurements over
the multipole range 108  l  2007 with �l = 100, and our theory
curves (black dashed lines) include shot noise and Galactic dust
emission contributions. The units of the CIB are MJy/sr at 353
GHz; all other quantities are dimensionless. We assume Gaussian
errors [31].

the single spectral energy distribution (SED) model of
[49], and its kernel is

WCIB(z) = bc
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where zc = �z = � = 2 and T = 34K are the fiducial

DG with 2MPZ and Planck lensing 5

tion (Lewis et al. 2000; Smith et al. 2003).5 As shown
in Balaguera-Antoĺınez et al. (2017), the impact of RSD
and the Limber approximation is . 5% and confined to
scales ` . 10. Given that this level of theoretical un-
certainty is smaller than the statistical errors and that
we limit the analysis to ` > 10, we ignore these e↵ects
here. In Eq. 3 we also neglect the e↵ect of the lensing
magnification bias (see Bianchini et al. (2016) for the
expression including these e↵ects).

Examining Eq. 5, one notices that the auto-power
spectrum scales as Cgg

` / b2(z)D2(z) while the cross-
spectrum scales as Cg

` / b(z)D2(z). Thus an appro-
priate combination of the two can eliminate the bias
and break the degeneracy between galaxy bias and cos-
mic growth. Giannantonio et al. (2016) devised a bias-
independent estimator for photo-z surveys to recover the
cosmic growth information:

D̂G =

*
Ĉg

`

/C
g
`

s
/C

gg
`

Ĉgg
`

+

`

. (7)

Here, the hat represents measured power spectra while
slashed quantities denote theoretical power spectra cal-
culated by removing the growth function from the Lim-
ber integration, i.e. the matter power spectrum in Eq. 5
is evaluated at z = 0. We emphasize that Eq. 7 is aver-
aged over the range of multipoles included in the anal-
ysis.

In the limit of no galaxy bias evolution over a bin
(narrow redshift bins), the DG estimator has the advan-
tage of being bias-independent: the true bias shows up
in both denominator and numerator and thus cancels
out, as does the assumed bias. Its expectation value is
hDGi = D on linear scales, although one might be con-
cerned about the impact of non-linearities. We test for
the dependence of the growth factor constraint on the
choice of angular scale cuts below. Note that the DG

estimator will scale as �8⌦mH2
0 due to its dependence

on the matter power spectrum and CMB lensing kernel.

3.2. Methods

In this work, we measure the DG statistic in the har-
monic domain by combining the observed Ĉg

` and Ĉgg
`

spectra. We work with maps at an HEALPix resolu-
tion of Nside = 256 and convert between di↵erent res-
olutions using the HEALPix built-in ud grade routine.
Power spectra are extracted using a pseudo-C` method

5

This implies that we can factorize the non-linear matter power

spectrum as P
NL

(k, z) = D2

(z)P
NL

(k, 0). We checked that this

assumption holds to more than 3% accuracy over the scales and

redshifts of interest.

based on MASTER algorithm (Hivon et al. 2002) that de-
convolves for the mask induced mode-coupling and pix-
elization e↵ects.

Operating with cross-power spectra as for Ĉg
` has a

number of advantages. A cross-spectrum is free of noise
bias and it is less prone to systematics as the systematics
and noise rarely correlate between di↵erent experiments
and observables.

The analysis also uses galaxy-galaxy auto-spectrum
Ĉgg

` which has to be noise subtracted. Here, we do not
debias for the shot-noise term, Ngg

` = 1/n̄, but rely on
a jackknifing approach instead (see, for example, Ando
et al. (2018)). We randomly split the galaxy catalog
in two and create two galaxy overdensity maps �1

g and
�2
g . From these, we form a pair of half-sum and half-

di↵erence maps, �±g = (�1
g ± �2

g)/2. The former map will
contain both signal and noise, while the latter will be
noise-only. We then extract their auto-power spectra
and evaluate the total galaxy auto-power spectrum as
Ĉgg

` = Ĉ++
` � Ĉ��

` .
We estimate both angular power spectra in linearly

spaced band powers of width �` = 10 between 10 

`  250, where the lower limit is imposed by the fil-
tering applied to the Planck lensing map. The max-
imum multipole is not limited by the data (as long
as `max . 2Nnside). Instead, the choice of `max is
motivated by the desire to avoid strongly non-linear
scales. In order to reduce potential contaminations from
non-linearities, in our baseline analysis we set `max to
the angular scale subtended by the density modes that
are entering the non-linear regime at z ' 0.08, i.e.
�2(kNL) = k3

NLP lin(kNL)/(2⇡2) ⇡ 1. Therefore, we set
`max = 70 and explore below the robustness of the re-
sults against di↵erent choices of `max. We have also
checked that adopting a finer bin width of �` = 5 has a
negligible impact on the results of the analysis.

Assuming that both fields behave as Gaussian ran-
dom distributed variables on the scales of interest, we
evaluate the error bars as

⇣
�ĈXY

L

⌘2

=
1

(2L + 1)�`fsky

h
(ĈXY

L )2 + ĈXX
L ĈY Y

L

i
,

(8)
where �` is the bin width of a band power centered at
L and ĈXX

L (ĈXY
L ) is the auto- (cross-)spectrum com-

prehensive of noise bias. By setting X = Y in Eq. 8,
one finds the expression for the auto-power spectra un-
certainties. The validity of this assumption has been
tested by Balaguera-Antoĺınez et al. (2017), who have
compared the Gaussian error bars with uncertainties es-
timated trough jackknife re-sampling and galaxy mocks
methods.

10

FIG. 6. Parameter bias, obtained from the κ power spectrum (left panel) and the κ moments (right panel), as a function of
the galaxy density angular ng used to compute the shape noise rms in eq. (13). The plotted quantity is the difference between
the mean of 1000 parameter fits using the estimator (12) with M measured with and without the Born approximation. The
difference is shown in units of the estimator standard deviation. We show the trend for Ωm (blue), w0 (red) and σ8 (green).
The quoted σray is calculated as a standard deviation. Parameter estimates PDFs are not Gaussian because the estimator d̂obs

which appears in equation (12) in general is non–Gaussian distributed. When we average over multiple fields of view though
(this is the case for LSST), the Gaussianity assumption is justified by the central limit theorem. This is why the standard
deviation σray is a reasonable benchmark for statistical significance.

approach under–estimates κ by a non–negligible amount.
In order to avoid this concavity effect we need to use
multiple discrete steps. We do not need to perform the
full ray–tracing calculations however, but we can sim-
ply add the density values on the lens planes as light
rays travel between them. The Born algorithm scales as
O(Nl). Ray–tracing has the same big O complexity, but
takes more time because at each step in the integration
one needs to compute O(NR) second derivatives and 2×2
matrix products, where NR is the number of light rays
that resolve the κ image. The quadratic corrections to κ
can also be computed in O(Nl) when appropriate caching
is used, but has a slightly different runtime compared to
ray–tracing due to the different structure of the linear
algebra operations involved. The memory usage is regu-
lated by the number of two dimensional grids that need
to be cached in order to perform the integration steps:
in the Born case just a density grid is needed, but in the
other cases one needs to keep track of the intermediate
Φ derivatives as well.

When forward modeling higher order moments of κ
full ray–tracing is required in order to obtain unbiased
constraints.

VI. CONCLUSIONS

In this work, we used cosmological simulations to study
the effectiveness of the Born approximation in predicting
WL observables, and to compute the corresponding bi-
ases on parameter constraints. Our main findings can be
summarized as follows:

• The post–Born corrections to the convergence
power spectrum, skewness and kurtosis are well ex-
plained by the next–to–leading orders in the Φ ex-
pansion of each statistic.

• Using the LensTools software package, Born in-
tegration costs 4 times less than ray–tracing, and
consumes about half as much memory.

• The Born approximation for the κ power spectrum
leads to negligible parameter bias for an LSST–like
survey, and holds for survey galaxy densities as high
as 60 galaxies/arcmin2.

• Fitting an observation with Born–approximated
higher κ moments leads to significant bias in the
(Ωm, w0,σ8) triplet, even in the presence of galaxy
shape noise.

In this work we examined the validity of the Born approx-
imation for WL galaxy surveys, but a similar study could
in principle be carried for the lensing potential recon-
struction from CMB temperature and polarization data
[29]. Lensing of the CMB probes structures over a wider
range of redshifts and hence CMB lensing observables
can be expected to closer to Gaussian than their galaxy
lensing counterparts. This suggests the possibility that
non–Gaussian features in CMB lensing data could come
from post–Born corrections of O(Φ2) rather than from
intrinsic non–Gaussianity in the Born O(Φ) terms. This
possibility has been suggested by [13], who looked at the
CMB lensing κ bi–spectrum. Because of the high signif-
icance with which non–Gaussianity in the CMB lensing
potential can be detected with future Stage IV experi-
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Figure 9. Void radius evolution of the void imprint on the CMB convergence
map
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consider an additional cut in Galactic latitude, so as to
extract a small, extremely clean patch of sky. In par-
ticular, we construct a mask comprising a symmetric
cut around the Galactic plane of ±60� in Galactic lat-
itude, which leaves 13.4% of the sky. When combined
with the GNILC/WISE/Planck lensing masks, the re-
sulting sky fraction f

sky

= 0.109. Unless stated other-
wise, our results throughout utilize the larger sky fraction
(f

sky

= 0.425), but we occasionally consider the more
constraining mask.

We measure all auto- and cross-power spectra of the
three tracer maps using a standard pseudo-Cl estimator.
The mask is apodized before power spectrum estimation
using a Gaussian taper with FWHM = 300. We de-
convolve the mask mode-coupling matrix from the mea-
sured power spectra and correct for the beam (GNILC-
only) and pixel window functions using the MASTER
method [47]. The power spectra are measured over the
multipole range 8  l  2007, which is set by the band-
limit applied to the Planck PR2 CMB lensing map. The
final results are binned into 20 linearly spaced multipole
bins, with �l = 100.

IV. METHODOLOGY

Eq. 8 calculates the coe�cients ci of the optimal linear
combination of tracers that minimizes the residual lens-
ing B-mode. However, if we use the measured spectra to
obtain ci, the forecasted delensing performance is slightly
biased due to measurement uncertainty. In Appendix A,
we show that fluctuations in the lensing cross-spectra add
a small bias and error to the predicted residual lensing
B-mode power.

To address this issue, we fit theory models to the mea-
sured spectra and compute the coe�cients ci using the
best-fit models, thereby significantly reducing any bias
and making the delensing forecast more reliable. We
model the cross-power spectrum between the CMB lens-
ing convergence and the tracer I in the Limber approxi-
mation [48],

CI
l =

Z z⇤

0

dzH(z)

�2(z)
W(z)W I(z)P (k = l/�(z), z), (10)

where H(z) is the Hubble parameter, z⇤ is the redshift of
the last scattering surface, �(z) is the comoving distance
to redshift z, and P (k, z) is the matter power spectrum
at wavenumber k and redshift z. W is the flat-space
CMB lensing kernel,

W(z) =
3

2H(z)
⌦mH2

0

(1 + z)�(z)

 
�⇤ � �(z)

�⇤

!
, (11)

where ⌦m and H
0

are the matter density and the Hubble
parameter today, respectively.

W I is the kernel for the tracer I: the CIB, WISE, or
Planck lensing reconstruction. For the CIB map, we use
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FIG. 1: The redshift kernels (window functions) for the CMB lens-
ing convergence, the CIB map, and the WISE galaxy samples, rep-
resented by red, green, and blue solid curves, respectively. All
are normalized to a unit maximum. Assuming that the kernel for
the lensing reconstruction can be approximated as the true lens-
ing kernel, we combine all three kernels using the optimal linear
combination coe�cients ci at l = 150 (black dotted). This better
traces the true lensing field.

FIG. 2: All the measured auto- and cross-power spectra with the
best-fit theory curves. Diamonds represent the measurements over
the multipole range 108  l  2007 with �l = 100, and our theory
curves (black dashed lines) include shot noise and Galactic dust
emission contributions. The units of the CIB are MJy/sr at 353
GHz; all other quantities are dimensionless. We assume Gaussian
errors [31].

the single spectral energy distribution (SED) model of
[49], and its kernel is

WCIB(z) = bc
�2(z)

H(z)(1 + z)2
e
� (z�zc)

2

2�2
z f⌫(1+z), (12)

for

f⌫ =

8
><

>:

⇣
e

h⌫
kT � 1

⌘�1

⌫�+3 (⌫  v0)
⇣
e

h⌫0
kT � 1

⌘�1

⌫0�+3

⇣
⌫
⌫0

⌘�↵
(⌫ > v0)

(13)

where zc = �z = � = 2 and T = 34K are the fiducial


