Synergies between future CMB surveys, Euclid and LSST

Giulio Fabbian 115 SIMONS UNIVERSITY **OF SUSSEX**

Giulio Fabbian

Is CMB "the" CMB?

- CMB is a snapshot of the universe at z 1100.... plus something else
- Contamination by astrophysical objects and galactic foregrounds
- Imprint of large scale structures:
 - (weak) Gravitational lensing
 - Sunyaev-Zeldovich (SZ) effect

CMB lensing state of the art 2019

• High-significance measurements, precision cosmological probe after Planck

$$\psi(\boldsymbol{\theta}) = -2 \int_0^{\chi_s} \frac{D_A(\chi_s - \chi')}{D_A(\chi') D_A(\chi_s)} \Psi(\boldsymbol{\theta}, \chi') d\chi' \qquad \beta(\boldsymbol{\theta}, \chi_s) = \boldsymbol{\theta} + \nabla \psi(\boldsymbol{\theta})$$

• **Milestone**: CMB polarization dominates the sensitivity (starting this year)

Cross-correlation basis and examples

Redshift self-calibration with number counts

- Self-calibration of galaxy redshift distribution can be achieved in S4/LSST era.
- Competitive w.r.t. results with priors on photometric redshift!

State of the art: DES & co.

• Systematics in cosmic shear measurements not yet mitigated by CMB-cross correlation

Euclid projections (preliminary)

Using only photometric survey and CMB observables will significantly improve cosmological parameters (also Merkel+2017)

Euclid optimistic and SimonsObs.

Enhanced large-scale cosmology

- Primordial f_{NL}^{local} : scale-dependent galaxy bias effect. $\sigma(f_{NL}^{local}) \approx 0.7$ through cosmic-variance cancellation techniques (Schmittfull & Seljak 2018).
- Can enhance inflation constraints with B-mode delensing with external tracers

$$\hat{B}^{\text{lens}}(\mathbf{l}) = \int \frac{d^2 \mathbf{l}'}{(2\pi)^2} W(\mathbf{l}, \mathbf{l}') f(\mathbf{l}, \mathbf{l}') E^N(\mathbf{l}') I(\mathbf{l} - \mathbf{l}')$$

• Avoids problem of internal delensing biases removal.

Cross-correlation with "polarized" CMB lensing

• EB+EE reconstruction channels deep enough to allow cross-correlation

Are we ready for pre

- Are our forward modeling and estimators good enough for SO/S4, LSST/Euclid era?
- How non-linear evolution affects cross-correlation observations observation approximation good enough?
- Accurate coherent modelling to be done on full-sky: need efficient tools.

1.5

100

How to include non-linearities and post-Born?

• N-body simulations (DEMNUni, Castorina+ 2016)

Fabbian & Stompor (2013) Calabrese, Carbone, Fabbian+ (2015) Fabbian, Calabrese, Carbone (2018)

How to include non-linearities and post-Born?

- N-body simulations (DEMNUni, Castorina+ 2016)
- Full-sky raytracing in multiple-lens approximation at arcsec resolution (Fabbian+2013, 2018)

$$A_{ij}^{N}(\boldsymbol{\theta}, \chi_{N}) = \delta_{ij}^{K} - \sum_{k=0}^{N-1} \frac{D_{k,N}}{D_{N}} U_{ip}^{(k)}(\boldsymbol{\beta}^{(k)}, \chi_{k}) A_{pj}^{(k)}(\boldsymbol{\theta}, \chi_{k})$$
$$A_{ij} \equiv \begin{pmatrix} 1 - \kappa - \gamma_{1} & -\gamma_{2} + \omega \\ -\gamma_{2} - \omega & 1 - \kappa + \gamma_{1} \end{pmatrix}$$

Beyond Born corrections: what are they?

Lensing changes location of later lensing events

Size and shape of image affected by first lensing event

Pratten & Lewis (2016) $(L_2 L_3)^{1/2} b_{L_1 L_2 L_3}^{\kappa \kappa \kappa} / (C_{L_1}^{\kappa \kappa} C_{L_2}^{\kappa \kappa} C_{L_3}^{\kappa \kappa})^{1/2}$

Pratten & Lewis (2016) $(L_2 L_3)^{1/2} b_{L_1 L_2 L_3}^{\kappa \kappa \kappa} / (C_{L_1}^{\kappa \kappa} C_{L_2}^{\kappa \kappa} C_{L_3}^{\kappa \kappa})^{1/2}$

$$\hat{\phi}(\mathbf{L}) = A_L \int_{\mathbf{l}} g(\mathbf{l}, \mathbf{L}) \tilde{T}_{expt}(\mathbf{l}) \tilde{T}_{expt}(\mathbf{L} - \mathbf{l})$$

Pratten & Lewis (2016) $(L_2 L_3)^{1/2} b_{L_1 L_2 L_3}^{\kappa \kappa \kappa} / (C_{L_1}^{\kappa \kappa} C_{L_2}^{\kappa \kappa} C_{L_3}^{\kappa \kappa})^{1/2}$

$$\hat{\phi}(\mathbf{L}) = A_L \int_{\mathbf{l}} g(\mathbf{l}, \mathbf{L}) \tilde{T}_{expt}(\mathbf{l}) \tilde{T}_{expt}(\mathbf{L} - \mathbf{l})$$

 $\tilde{T}(\mathbf{l}) = T(\mathbf{l}) + \delta T(\mathbf{l}) + \delta^2 T(\mathbf{l}) + \mathcal{O}(\phi^3) \qquad \delta T(\mathbf{l}) = -\int_{\mathbf{l}'} \mathbf{l}' \cdot (\mathbf{l} - \mathbf{l}') T(\mathbf{l}') \phi(\mathbf{l} - \mathbf{l}')$

Pratten & Lewis (2016) $(L_2 L_3)^{1/2} b_{L_1 L_2 L_3}^{\kappa \kappa \kappa} / (C_{L_1}^{\kappa \kappa} C_{L_2}^{\kappa \kappa} C_{L_3}^{\kappa \kappa})^{1/2}$

$$\hat{\phi}(\mathbf{L}) = A_L \int_{\mathbf{l}} g(\mathbf{l}, \mathbf{L}) \tilde{T}_{expt}(\mathbf{l}) \tilde{T}_{expt}(\mathbf{L} - \mathbf{l})$$

 $\tilde{T}(\mathbf{l}) = T(\mathbf{l}) + \delta T(\mathbf{l}) + \delta^2 T(\mathbf{l}) + \mathcal{O}(\phi^3) \qquad \delta T(\mathbf{l}) = -\int_{\mathbf{l}'} \mathbf{l}' \cdot (\mathbf{l} - \mathbf{l}') T(\mathbf{l}') \phi(\mathbf{l} - \mathbf{l}')$

$$\langle \tilde{T}\tilde{T}\tilde{T}\tilde{T}\rangle = \langle \delta T\delta T\delta TT \rangle + \cdots = \langle T_{,i}\phi_{,i}T_{,j}\phi_{,j}T_{,k}\phi_{,k}T \rangle + \cdots$$

Böhm et al. (2016)
$$C_{l}^{TT}B_{\phi}(\mathbf{l}_{1}-\mathbf{l},\mathbf{l}_{2}+\mathbf{l},-\mathbf{l}_{1}-\mathbf{l}_{2})$$

European CMB coordination 2019

Pratten & Lewis (2016) $(L_2 L_3)^{1/2} b_{L_1 L_2 L_3}^{\kappa \kappa \kappa} / (C_{L_1}^{\kappa \kappa} C_{L_2}^{\kappa \kappa} C_{L_3}^{\kappa \kappa})^{1/2}$

$$\hat{\phi}(\mathbf{L}) = A_L \int_{\mathbf{l}} g(\mathbf{l}, \mathbf{L}) \tilde{T}_{expt}(\mathbf{l}) \tilde{T}_{expt}(\mathbf{L} - \mathbf{l})$$

 $\tilde{T}(\mathbf{l}) = T(\mathbf{l}) + \delta T(\mathbf{l}) + \delta^2 T(\mathbf{l}) + \mathcal{O}(\phi^3) \qquad \delta T(\mathbf{l}) = -\int_{\mathbf{l}'} \mathbf{l}' \cdot (\mathbf{l} - \mathbf{l}') T(\mathbf{l}') \phi(\mathbf{l} - \mathbf{l}')$

$$\langle \tilde{W}\tilde{X}\phi_{\text{ext}}\rangle_{\mathcal{O}[(C^{\phi\phi})^{3/2}]} = \langle \delta W\delta X\phi_{\text{ext}}\rangle + \langle W\delta^2 X\phi_{\text{ext}}\rangle + \langle \delta^2 W X\phi_{\text{ext}}\rangle$$

Fabbian et al. (2019)
$$C_{l_5}^{\bar{W}\bar{X}}B^{\phi_{\text{ext}}\phi\phi}(L,l_1,l_3)$$

N^{3/2} and cosmological parameters estimation

- Bias on cosmological parameters at 1-2 sigma if unaccounted: neutrino mass more affected!
- Data set combination more robust but possible inconsistencies due to $N^{3/2}$
- Effect dependent on lensing reconstruction channel: polarization less affected

Coherent CMB lensing - LSS simulations

• Percent level agreement with semi-analytical models for non-linear matter power spectrum.

Cross-correlation with external tracers for S4

N^{3/2} detection prospects

 Mimics intrinsic alignment on shear-CMB lensing correlation, prevent correct systematic marginalization (Hall & Taylor, Larsen & Challinor)

ΔA_{IA}	z = 0.20	z = 0.35	z = 0.60	z = 1.00	z = 2.00
TT	0.02 ± 0.07	0.09 ± 0.07	0.27 ± 0.07	0.57 ± 0.08	1.08 ± 0.11
EB	0.00 ± 0.7	0.00 ± 0.07	0.01 ± 0.07	0.02 ± 0.08	0.05 ± 0.10
MV	0.01 ± 0.06	0.03 ± 0.06	0.10 ± 0.06	0.21 ± 0.07	0.42 ± 0.08

N^{3/2} detection prospects - II

- High significance detection in galaxy cross-correlation with S4 (~5-10 σ)
- For SO, N^{3/2} will be detected in tomographic cross-correlation analysis and cosmic-variance cancellation regime

Ongoing work: alternative probes

- Cosmic voids: powerful probe of neutrino mass (e.g. Massara+2015). Can break $\sigma_8 \Omega_{\nu}$ degeneracy with matter profile.
- Void profile from CMB lensing of DEMNUni simulations with massive neutrinos
- Applying pipeline to N-body simulations with non-standard cosmologies (e.g. MG)

19

Giulio Fabbian

Conclusions

- CMB lensing and LSS cross-correlation: less systematics and better cosmology.
 - Increased statistical power, systematics self-calibration and marginalization.
- In Euclid/LSST era we need accurate predictions.
 - Theoretical modelling and approximations employed need to be well understood (numerical simulations as well).
 - E.g. N^{3/2} bias can prevent robust cosmological analysis.
- Additional synergies with SZ surveys to be explored.
 - Can constraint halo thermodynamical properties, feedback processes.
- More detailed synergies with EUCLID currently under investigation.

Bias on lensing reconstruction from higher-order

Beck, Fabbian, Errard (2018). Also Böhm et al. (2018)

Redshift and CMB sensitivity dependencies

Redshift and CMB sensitivity dependencies

Coherent galaxy density simulations

Percent level accuracy coherent galaxy density simulations for z<9.45, sub percent post-Born corrections (first estimate)

Real space non-Gaussianities

Lewis (2011)

Real space non-Gaussianities

Delensing external tracers

 CMB lensing and LSS cross-correlation: less systematics and better cosmology.

 Additional statistical power and systematics self-calibration and marginalization

