

Sunyaev-Zel'dovich Effect-Based Neutrino Constraints

Sebastian Bocquet - LMU Munich

- Great introduction and theory overview by Massimiliano!
- Premise: Current constraints
- Statistical methods
- Baryons: Challenge or opportunity?
- Where we're going with SZ effect cosmology

- Presence of massive neutrinos change the angular diameter distance that is degenerate with H0 (Planck 18 VI)
- Mapping to low-z amplitude σ₈ also changes
- Therefore, combine with
 - BAO
 - Low-z LSS probe
 - H0 (caution)

Obtaining Neutrino Constraints

- Primary CMB and LSS probes provide weak constraints on their own
- For primary CMB, neutrino properties are degenerate with σ₈
- Break that degeneracy e.g., by analyzing CMB + cluster abundance
- (Other approaches are: CMB lensing, BAO, H₀)

Example from Bocquet+19

Robustness to Choice of Cosmology

≥

 $\mathbf{G}_{\mathbf{V}}$

Allowing for additional freedom in the cosmological model (curvature, dark energy equation of state, N_{eff} , r) does not significantly degrade the constraint on Σm_{ν} (Mantz+15).

Simultaneous constraints on $\Sigma m_{\rm v}$ and $N_{\rm eff}$ (de Haan+16)

Methods: Self-Consistent, Data-Driven Statistical Modeling Framework

(Hierarchical Bayesian modeling for the cool kids)

- Halo mass function is extremely sensitive to cosmology
- Measure cluster masses and redshifts
- Compare mass function measurement with model prediction
- Done
 - ... or not?

In practice: Empirical calibration of observable — mass relations

- SZ effect and X-ray Y_X
 - Small intrinsic & measurement scatter < 20 %
 - Systematically limited by our (lack of) understanding of gas physics in clusters
- Weak gravitational lensing
 - Measures total mass
 - Mass modeling in N-body simulations
 - %-level systematics
 - Large intrinsic & measurement scatter > ~30 %

SOLUTIN MALE SCOPE

- WL is a biased mass estimator (with intrinsic scatter) because we fit an NFW profile
- Mass modeling
 - NFW profile mismatch
 - Miscentering
 - Correlated LSS
- Other systematics:
 - Cluster member contamination
 - Shear and photo-z bias

Source of systematic	SV Amplitude uncertainty	Y1 Amplitude Uncertainty
Shear measurement	4%	1.7%
Photometric redshifts	3%	2.6%
Modeling systematics	2%	0.73%
Cluster triaxiality	2%	2.0%
Line-of-sight projections	2%	2.0%
Membership dilution + miscentering	$\leqslant 1\%$	0.78%
Total Systematics	6.1%	4.3%
Total Statistical	9.4%	2.4%
Total	11.2%	5.0%

DES Y1: 4.3% systematic uncertainty (McClintock+19)

- Cluster cosmology is a modeling challenge.
- Be explicit about your assumptions!
- We will not
 - assume hydrostatic equilibrium
 - consider a hydrostatic bias extracted from hydro simulations (let's discuss their predictivity/ validation over coffee/beer!)
- We will trust our intuition (and decades of research) that
 - cluster mass proxies correlate with mass
 - Mean observable—mass relation is well described by a power law in mass and redshift (with unknown parameters)
 - weak gravitational lensing measures halo mass on average with %-level systematic uncertainty (more on [known] biases later)

2500 deg² SPT-SZ Survey Cluster Catalog and Multi-Observable Follow-up Data

Sebastian Bocquet - LMU Munich

Multi-Observable – Mass Relation

e.g., Bocquet+19

Multi-Observable – Mass Relation

e.g., Bocquet+19

3 + 3 + 1 parameters for mean relations 3 + 3 parameters for covariance matrix (correlated intrinsic scatter)

Forward-Modeling Analysis Strategy

e.g., Bocquet+19

Simultaneous analysis of all observables to capture all covariances

Sebastian Bocquet - LMU Munich

Mass calibration

$$\frac{dN(\xi, z \mid \boldsymbol{p})}{d\xi dz} = \iint dM \, d\zeta \, \left[P(\xi \mid \zeta) P(\zeta \mid M, z, \boldsymbol{p}) \right] \qquad \qquad \iint \int \int \int \int \mathcal{D} f(Y_X^{\text{ob}} - Q(Y_X^{\text{ob}})) \, dM \, dz \, dZ(z, \boldsymbol{p}) \, dM \, dz \, dZ(z, \boldsymbol{p}) \, dZ(z, \boldsymbol{$$

$$P(Y_{\rm X}^{\rm obs}, g_{\rm t}^{\rm obs} | \xi, z, \boldsymbol{p}) =$$

$$\iiint dM \, d\zeta \, dY_{\rm X} \, dM_{\rm WL} [$$

$$P(Y_{\rm X}^{\rm obs} | Y_{\rm X}) P(g_{\rm t}^{\rm obs} | M_{\rm WL}) P(\xi | \zeta)$$

$$P(\zeta, Y_{\rm X}, M_{\rm WL} | M, z, \boldsymbol{p}) P(M | z, \boldsymbol{p})]$$

Sebastian Bocquet - LMU Munich

- Wide flat priors on SZ scaling relation parameters fully encompass posterior
- Cluster constraint statistically limited by mass calibration: need more (weak lensing) data! (currently 32 clusters)
- 1.5 σ agreement with *Planck* TT+lowTEB

LCDM with varying sum of neutrino masses

Bocquet et al. <u>2019ApJ...878...55B</u>

Neutrino Masses

Bocquet et al. <u>2019ApJ...878...55B</u>

- Combination with Planck primary CMB measurements yields 2 σ preference for non-zero sum of neutrino masses
- Again, limited by mass calibration uncertainties
- Using τ prior from Planck 2018 gives 1.7 σ preference
- Using only the z < 0.6 cluster sample gives no preference for non-zero sum of neutrino masses

Outlook for SPT Cluster Cosmology

- Weak-lensing mass calibration of SPT clusters
 - Currently limited by number of WL observations
 - Use overlap of SPT and the Dark Energy Survey (DES) to get WL data for all SPT clusters at z <~ 1 (Paulus+, Bocquet+, both in prep.)
 - Ongoing HST programs for high-z clusters (Schrabback+)
 - CMB lensing
- SPTpol (2nd generation camera) analyses ongoing
 - Wide survey extension (another 2700 square deg: SPTpol-ECS, Bleem+ to be submitted)
 - Main, deep fields: Push to lower-mass clusters (more abundant)
 - Deepest 100d catalog is published: Huang+19
- SPT-3G: ongoing, deep 1500 square degree survey
 - Planck + SPT-3G clusters: $\sigma(\Sigma m_v) \sim 0.06 \text{ eV}$

Baryons: Challenges and Opportunities

processes change the abundance (e.g., Cui+12, Cui+14, Cusworth+14, Martizzi+14, Velliscig+14, Vogelsberger+14, Schaller+15)

• At fixed halo mass, feedback

From *Magneticum Pathfinder*: for lacksquareeROSITA, bias in Ω_m as large as total error (Bocquet+16, Dolag+16)

Baryons and the Halo Mass Function

Ът 0.816 д 8 0.812 0.808 $\sigma_8(\Omega_m/0.27)^{0.3}$ 0.810 0.806

0.260

0.265 0.270

 Ω_{m}

0.802

Biases if effect of hydro is ignored for eROSITA-like surveys!

0.808

0.812

 σ_8

0.816

0.802

0.806

 $\sigma_8 (\Omega_{\rm m}/0.27)^{0.3}$

0.810

Hydro

input

DMonly

Tinker08

- For weak-lensing analyses: need mapping from halo mass to (projected) mass profile
- *N*-body simulations sufficient for mapping halo structure outside of the core
- Hydro effects most important for r<~100kpc
- "Trick": Impact of hydro effects can effectively be captured by a change in halo concentration
- No need to calibrate that change in concentration if we treat it as free parameter

Fig.: Choice of sub grid physics model not important if concentration is a free parameter (Lee+18)

- At high *k*, correlation function analyses are limited by uncertainties in feedback models
- We study the relation between halo mass and gas observables (X-ray gas mass (fraction), X-ray temperature, SZ effect)
 - Validation dataset for hydro simulations
 - Measured cluster profiles can directly feed into "baryonification" models (e.g., Schneider+19)

Where we are going

Cosmology Dependence of Halo Mass Function

- Better: Use emulators to interpolate between numerical simulations of different cosmologies (for HMF: McClintock+18, Nishimichi+19)
- *Mira-Titan Universe*: first emulator suite to include massive neutrinos and dynamical dark energy (Heitmann+16)
- Use 111 (2.1 Gpc)³ and (5 Gpc)³ simulations covering 8 cosmological parameters and interpolate using Gaussian process (Bocquet+ to be submitted)
- Percent-level accuracy

Sebastian Bocquet - LMU Munich

- CMB Cluster Lensing
 - CMB lensing not affected by galaxy lensing systematics such as shear or photo-z calibration
 - Measurements now routinely performed using *Planck*, ACT, SPT temperature data
 - CMB lensing using polarization detected (SPT, Raghunathan+19)

28

Future of CMB lensing (Basu+19, Delabrouille+19)

CMB lensing-calibrated cluster cosmology

- First self-consistent cluster cosmology with mass calibration from CMB lensing (Zubeldia & Challinor 19)
- Cluster sample and lensing from *Planck* data

Growth of Structure: Present and Future

Sebastian Bocquet - LMU Munich

Towards the Coordination of the European CMB program

Sum of Neutrino Masses: Future

Bottomline (reminder): constraints on sum of neutrino masses do not significantly degrade when opening up cosmological parameter space (Madhavacheril+17)

31

Summary

- Data-driven cosmology from SZ effect-selected galaxy clusters
 - Multi-observable modeling framework
 - Weak-lensing mass calibration
- Galaxy WL samples are expanding thanks to the Dark Energy Survey, KiDS, HSC
- CMB lensing is catching up!
- First CMB stage 2 catalogs are available
- Expect tremendous improvements!