

The Simons Observatory Collaboration

United States

- Arizona State University
- Carnegie Mellon University
- Center for Computational Astrophysics
- Cornell University
- Florida State
- Haverford College
- Lawrence Berkeley National Laboratory
- NASA/GSFC
- NIST
- Princeton University
- Rutgers University
- Stanford University/SLAC
- Stony Brook
- University of California Berkeley
- University of California San Diego
- University of Michigan
- University of Pennsylvania
- University of Pittsburgh
- University of Southern California
- West Chester University
- Yale University

Japan

- KEK
- IPMU
- Tohoku
- Tokyo

10 Countries

- 40+ Institutions
- 160+ Researchers

~200

Canada

- CITA/Toronto
- Dunlap Institute/Toronto
- McGill University
- Simon Fraser University
- University of British Columbia

Chile

- Pontificia Universidad Catolica
- University of Chile

Europe

- APC France
- Cambridge University
- Cardiff University
- Imperial College
- Manchester UniversityOxford University
- SISSA Italy
- University of Sussex

South Africa

Kwazulu-Natal, SA

Australia

Melbourne

Middle East

Tel Aviv

The Simons Observatory instruments and technology

Large Aperture Telescope 18 m 6 m crossed Dragone coupled to 13 optics tubes, Baseline is 7 tubes for SO, with dichroic pixels: • One tube: 30/40 GHz • Four tubes: 90/150 GHz Two tubes: 220/270 GHz

Simons Observatory Layout

One 6m Large Aperture Telescope Three 0.5m Small Aperture Telescopes Five-year survey planned 2021-26, six frequencies 30-280 GHz

Large telescope: resolution needed for all science goals except tensor-to-scalar ratio Small telescopes: lower noise at the few-degree-scale B-mode signal, for tensor-to-scalar ratio

Anticipated Sky Coverage

effective f_{sky} ~ 10%

for SO noise and coverage, dedicated delensing survey not required

effective $f_{sky} \sim 40\%$

maximal overlap w/ LSST, large overlap w/ DESI

Anticipated Noise Performance

Г				SATs $(f_{\rm sky} = 0.1)$			LAT $(f_{\rm sky} = 0.4)$	
	Fre	q. [GHz]	FWHM (')	Noise (baseline)	Noise (goal)	FWHM (')	Noise (baseline)	Noise (goal)
			, ,	$[\mu ext{K-arcmin}]$	$[\mu ext{K-arcmin}]$, ,	$[\mu ext{K-arcmin}]$	$[\mu ext{K-arcmin}]$
ı	IF	27	91	35	25	7.4	71	52
		39	63	21	17	5.1	36	27
	N 1 🗆	93	30	$\begin{vmatrix} 2.6 \\ 3.3 \end{vmatrix}$ 2 μ K-amin	1.9	2.2	$egin{array}{c} 8.0 \ 10 \ \end{bmatrix}$ 6 μ K-amin	5.8
	MF	145	17	3.3	2.1	1.4	10 δ μκ-αιιιιι	6.3
		225	11	6.3	4.2	1.0	22	15
	HF 	280	9	16	10	0.9	54	37

White noise levels for 5-yr survey; also include atmospheric noise model and combine with Planck

SO SAT Science: Primordial Tensor Modes

SAT BB forecasting based on full-sky simulated maps (PySM) w/ multiple sets of realistic foregrounds

Sky models are combined with SO SAT noise model, then coupled to several foreground mitigation schemes (cross-spectrum analysis, xForecast, BFoRe, harmonic-space ILC) to infer *r*

SO LAT Science: Neutrino Masses

Constraints derived from CMB lensing power spectrum (+DESI BAO), tSZ cluster counts (+LSST WL), and tSZ power spectrum (+DESI BAO)

SO LAT Science: Light Relics

SO can detect any particle with spin that decoupled after the start of the QCD phase transition (at 20)

 $\sigma(N_{eff}) = 0.07$

Forecasts are strongly robust to foregrounds (driven by TE + EE)

Other damping tail science:

- BBN (Y_p)
- H₀ improvement (~2x)
- Dark matter interactions
- Ultra-light axions
- and more

Table 1: Summary of SO key science goals^a

	Table 1. Summary of 50 key science goals						
	Current ^b	SO-Nominal (2022-27)		Method ^d	SWP		
		Baseline	Goal				
Primordial							
perturbations (§2.1)							
$r\left(A_L=0.5\right)$	0.03	0.003	0.002^{e}	BB + external delensing	[28]		
n_s	0.004	0.002	0.002	TT/TE/EE	[28]		
$e^{-2\tau}\mathcal{P}(k=0.2/\mathrm{Mpc})$	3%	0.5%	0.4%	TT/TE/EE	[30]		
$f_{ m NL}^{ m local}$	5	3	1	$\kappa\kappa imes ext{LSST-LSS}$	[23]		
		2	1	kSZ + LSST-LSS			
Relativistic species (§2.2)							
$N_{ m eff}$	0.2	0.07	0.05	TT/TE/EE + $\kappa\kappa$	[16]		
Neutrino mass (§2.3)							
$\Sigma m_{\nu} \text{ (eV, } \sigma(\tau) = 0.01)$	0.1	0.04	0.03	$\kappa\kappa$ + DESI-BAO	[11]		
		0.04	0.03	$tSZ-N \times LSST-WL$			
Σm_{ν} (eV, $\sigma(\tau) = 0.002$)		0.03^{f}	0.02	$\kappa\kappa$ + DESI-BAO + LB			
		0.03	0.02	$tSZ-N \times LSST-WL + LB$			
Beyond standard							
model (§2.4)							
$\sigma_8(z=1-2)$	7%	2%	1%	$\kappa\kappa$ + LSST-LSS	[31]		
		2%	1%	$tSZ-N \times LSST-WL$			
H_0 (Λ CDM)	0.5	0.4	0.3	TT/TE/EE + $\kappa\kappa$	[3]		
Galaxy evolution (§2.5)							
$\eta_{ m feedback}$	50-100%	3%	2%	kSZ + tSZ + DESI	[2]		
$p_{ m nt}$	50-100%	8%	5%	kSZ + tSZ + DESI	[2]		
Reionization (§2.6)							
Δz	1.4	0.4	0.3	TT (kSZ)	[1]		

coupling to more than 100,000

detectors

The Simons Observatory Large Aperture Telescope

- 6-meter telescope developed in collaboration with CCAT and built by Vertex
- 2-mirror design with a sidelooking camera.
- The camera rotates with the elevation axis, and has a separate camera-boresite rotation.
- The back of the camera can be accessed while installed on the telescope.
- The telescope is capable of coupling to more than 100,000 detectors

3 PT420 coolers

→ 165 watts of cooling at 40 K

total weight ~ 5000kg (!) when populated with 13 tubes

- 1200 kg cooled to 4K
- 200 kg cooled to 100 mK

Under contract for Telescope, have multiple vendor quotes for receiver

The Simons Observatory Small Aperture Camera

- 42 cm aperture size, 35 degree FoV
- · 40,000 detectors for SO
- · continuously rotating HWP
- Ground screen 4.9 m high, 16 meters in diameter

SO Instrument Progress 2019

Large Aperture Telescope Receiver (LATR)

2017 2018 2019

Large-Aperture Telescope

Small Aperture Telescope (SAT)

Small Aperture Telescope Platform (SATP)

2017 2018 2019

Universal Focal Plane Module (UFM)

2017 2018 2019

Simons Observatory Outlook

Large Aperture Receiver Design

Manufacture

Cryogenic test

integration and test

ship and testing

ship

and

testing

scientific observations

2018

2019

2020

2021

Small Aperture Platform Design

Platform Fabrication

accep -tance ship test

install and test

First SAT on sky 2020

scientific observations

Small Aperture Camera Design

Manufacture

Cryogenic test

integration and test

- · site design and construction
- · analysis pipeline development
- calibration strategy
- etc.

European Context

- Simons Observatory in construction
 - By mid 2021: First light for SAT#1
 - By early 2023: Construction complete
- European collaborators playing essential role
 - Proposals to extend hardware role (e.g. Michael Brown's talk next)
 - Further collaborative ideas very welcome!
- SO and CMB-S4 cooperation
 - Large team overlap and strong contributions to CMB-S4 reference design
 - Technical Sharing from SO to CMB-S4

Backup

10

Additional science includes (but is not limited to):

- · helium fraction, cosmic birefringence, primordial magnetic fields
- · high-redshift clusters
- dark matter annihilation and interactions

Neutral

1000

isocurvature

Fully ionised

calibration of multiplicative shear bias (e.g., for LSST)

100

- new sample of dusty star-forming galaxies
- transient sources
- cosmic infrared background

THE SIMONS OBSERVATORY: SCIENCE GOALS

redshift+1

1808.07445

AND FORECASTS

Science and Planning - 2018

- V0 Initial Instrument Concepts Oct. 2016
- V1 Detailed Instrument Concept Jan. 2017
- V2 Frequency Balance June 2017
- V3 Sensitivity Budget and Tracking 2018

Science Traceability Matrix

ID	Title	Parameter	Baselin e	Goal	Current	Method
SR-1a	Primordial fluctuations	r	0.003	0.002	0.04	ВВ
SR-1b		P(k=0.2 h/Mpc)	0.5%	0.4%	6%	T/E
SR-1c		fnl	3	1	5	kk+LSST+3-pt
SR-2	Relativistic Species	N _{eff}	0.07	0.05	0.11	T/E
SR-3	Neutrino mass	m _V (eV)	0.04	0.03	0.1	kk+DESI
			0.04	0.03		tSZ-N+LSST
			0.05	0.04		tSZ-CI+DESI
SR-4	Dark Energy	sigma ₈ (z=2-4)	3%	2%	7%	kk+LSST
			3%	2%		tSZ+LSST/k
SR-5a	Galaxy Evolution	feedback efficiency in massive halos	6%	3%	50- 100%	tSZ+kSZ
SR-5b		non-thermal pressure in massive halos	15%	12%	50- 100%	tSZ+kSZ
SR-6	Reionization	duration delta(z)	0.6	0.3	1.4	T/E (kSZ)

Measurement Requirements - SAT

ID	Title	Description	Trace
MR-1S	#Bands	30, 40, 90, 150,220, 280 GHz	SR-1a
MR-2S	angular resolution	90, 60, 30, 30, 30, 30'	SR-1a
MR-3S	sensitivity white noise	(Baseline) 35, 22, 2.6, 3.3, 6.3, 16 uK/amin	SR-1a
		(Goal) 25, 17, 1.9, 2.1, 4.2, 10 uK/amin	
MR-4S	1/f noise	knee I<25	SR-1a
MR-5S	pol systematics	systematics below 40% of statistical errors	SR-1a
MR-6S	sky area	10% effective sky area with low FG	SR-1a

Measurement Requirements - LAT

ID	Title	Description	Trace
MR-1L	#Bands	30, 40, 90, 150,220, 280 GHz	SR-3-6
MR-2L	angular resolution	7.5, 5.5, 2.2, 1.4, 1.0,1.0'	SR-3-6
MR-3L	sensitivity white noise	(Baseline) 71, 36, 8.0, 10.0, 22, 54 uK/amin	SR-1b-6
		(Goal) 52, 27, 5.8, 6.3, 15, 38 uK/amin	
MR-4L	1/f noise	knee I<1000	SR-3-6
MR-5L	pol systematics	systematics below 40% of statistical errors	SR-1b-6
MR-6L	sky area	40+% sky, overlapping with LSST (f=0.35-4), DESI (f=0.1)	SR-1b-6