The Cosmic Dawn (CoDa) Project: Simulating Reionization and Galaxy Formation

Paul Shapiro The University of Texas at Austin

Collaborators in this work include:

Pierre Ocvirk⁷, Dominique Aubert⁷, Taha Dawoodbhoy¹, Ilian Iliev², Hyunbae Park¹, Anson D'Aloisio^{1,15}, Romain Teyssier⁸, Gustavo Yepes⁹, Stefan Gottloeber¹⁰, Nicolas Gillet⁷, Junhwan Choi¹, David Sullivan², Yehuda Hoffman¹⁴, Jenny Sorce¹⁶, Nicolas Deparis⁷, Joseph Lewis⁷ + Other CLUEs Members (1)U Texas at Austin (2)U Sussex (7)U Strasbourg (8) U Zurich (9) U Madrid (10) AIP Potsdam (13) Hebrew U (15)U Washington (16) U Lyons

"CoSyne: Cosmological Synergies in the Upcoming Decade" Institut d'Astrophysique, Paris, December 11, 2019

"CoSyne: Cosmological Synergies in the Upcoming Decade" Institut d'Astrophysique, Paris, December 11, 2019

Introducing the CoDa (COSMIC DAWN) Simulations

- Largest fully-coupled rad-hydro reionization simulations to-date, global and local
- Volume large enough to simulate global reionization; resolution high enough to follow all atomic-cooling halos (>10⁸ M_solar), including MW/M31 dwarf satellites.
- 3 EOR Simulations of L > 90 Mpc boxes, from CLUES Constrained Realization I.C.'s
 -- CoDa I and CoDa II :

RAMSES-CUDATON simulations (uniform grid): hybrid CPU-GPU code

- Grid size = $(4096)^3$ cells, $\Delta x \sim 20$ cKpc < 3 Kpc's ; N-body particles = $(4096)^3 \sim 69$ billion
- Minimum halo mass ~ 10⁸ M_solar ~300 particles

Ocvirk, Gillet, **Shapiro**, Aubert, Iliev, Teyssier, Yepes, Choi, Park, D'Aloisio, Sullivan, Gottloeber, Hoffman, Stranex, Knebe 2016, MNRAS, 463,1462 (arXiv:1511.00011) (CoDa I)

Ocvirk, Aubert, Sorce, **Shapiro**, Deparis, Dawoodbhoy, Lewis, Teyssier, Yepes, Gottloeber, Ahn, Iliev, Hoffman, 2019, MNRAS, submitted (arXiv:1811.11192) (CoDa II)

-- CoDa I – AMR :

EMMA simulation (Adaptive Mesh Refined): hybrid CPU-GPU code

- AMR resolution = $(16,384)^3$ cells (fully-refined) $\rightarrow \Delta x \sim 5$ cKpc $\rightarrow \sim 500$ pc
- N-body particles = (2048)³ ~ 8.6 billion
- Minimum halo mass ~ 10⁸ M_solar ~ 36 particles

Aubert, Deparis, Ocvirk, **Shapiro**, Iliev, Yepes, Gottloeber, Hoffman, Teyssier 2018, ApJL, 856, L22 (arXiv:1802.01613) (CoDa I - AMR)

Simulating Galaxy Formation and Reionization of the Local Universe with Fully-Coupled Radiation-Hydro: CoDa II

Ocvirk, Aubert, Sorce, Shapiro, Deparis, Dawoodbhoy, Lewis, Teyssier, Yepes, Gottloeber, Ahn, Iliev, Hoffman 2019, MNRAS submitted (arXiv: 1811.11192)

RAMSES-CUDATON simulation

- Box size = 94 cMpc
- Grid size = (4096)³ cells, Δx ~ 20 cKpc < 3 Kpc
- N-body particles = $(4096)^3 \sim 69$ billion
- Minimum halo mass ~ 10⁸ M_solar ~300 particles
- Newer CLUEs initial conditions

TITAN Supercomputer requirements

- # CPU cores (+ # GPUs) = 65536 (+ 16384)
- runtime ~ 6 days

Ocvirk, Aubert, Sorce, Shapiro, Deparis, Dawoodbhoy, Lewis, Teyssier, Yepes, Gottloeber, Ahn, Iliev, Hoffman 2019, MNRAS submitted (arXiv:1811.11192)

• Star formation efficiencies calibrated so reionization ends early enough: $z_{rei} > 6$

CODA II

- Good agreement with observable constraints
- Post-reionization neutral fraction (UV background) a bit low (high), respectively
 gas clumping missing at small scales?

UV Luminosity Function vs. Galaxy Observations from Bouwens + (2015), (2016), Finkelstein + (2015), Atek + (2018)

- Shaded areas and thick lines show the envelope and median of the LFs of 5 independent, rectangular subvolumes, each 1/5 full box volume, similar to CANDELS-DEEP volume at z = 6
- M_{AB1600} magnitudes computed using BPASS Z = 0.001 binary population model (no dust) for each halo star particle, evolved since its birth-time, scaled to deliver the same ionizing photons released per 10 Myr

CODA II

CoDa II UV Luminosity Function

The Inhomogeneous UV Luminosity Function of High-Redshift Galaxies

Reionization was inhomogeneous in time and space

The Inhomogeneous UV Luminosity Function of High-Redshift Galaxies

z = 6

Galaxies at z = 6 superposed on reionization redshift map

Halo clustering correlates with reionization redshift
 So must the high-redshift galaxy UV Luminosity Function!

z = 6

z = 8

 $z_{\rm re} < 7$

 $z_{\rm re} > 9$

Q: Why is the UV LF of galaxies inhomogeneous during the EOR?

(SFR in ALL halos depends upon local reionization redshift)
 +

 (reionization is inhomogeneous)

Q: Why is the UV LF of galaxies inhomogeneous during the EOR?

- **A**:
- 1. (SFR depends upon halo mass)

(halo mass function is inhomogeneous)

3. (SFR in ALL halos depends upon local reionization redshift)
 +

 (reionization is inhomogeneous)

CODA II

Star formation rate CoDa II

Star formation rate (SFR) was higher in higher-mass haloes even before the low-mass haloes were suppressed by reionization

• SFR $\propto M^{\alpha}$, α ~ 1.4 for M > 10^{10} solar masses, steepening below M ~ 10^9 , but then drops sharply below M ~ 3 X 10^9 toward EOR end

The Inhomogeneous Halo Mass Function of High-Redshift Galaxies

Q: Why is the UV LF of galaxies inhomogeneous during the EOR?

3. (SFR in ALL halos depends upon local reionization redshift)
 +

 (reionization is inhomogeneous)

CODA II

Star formation rate (SFR) was higher in higher-mass haloes even **before** the low-mass haloes were suppressed by reionization

 Reionization suppresses star formation rate in dwarf galaxies, for M < 10⁹ solar masses Star formation rate CoDa II

• SFR $\propto M^{\alpha}$, $\alpha \sim 1.4$ for M > 10¹⁰ solar masses, steepening below M ~ 10⁹, but then drops sharply below M ~ 3 X 10⁹ toward EOR end

Suppression of Star Formation in Low-Mass Galaxies Caused by the Reionization of their Local Patch

Dawoodbhoy, **Shapiro**, Ocvirk, Aubert, Gillet, Choi, Iliev, Teyssier, Yepes, Knebe, Gottloeber, D'Aloisio, Park, Hoffman 2018, MNRAS, 480, 1740 (arXiv:1805.05358)

- Reionization history was different in different locations → each point in space had its own redshift of local reionization, z_{re}(x)
- From CoDa I, we computed local reionization redshift field $z_{re}(\mathbf{x})$, by smoothing underlying 4096³ cells to 256³ cells, 0.357 cMpc on a side. Each halo was assigned the value of z_{re} for its location.

Local Reionization: There Goes the Neighborhood!

Zoom-In $(4 h^{-1} cMpc)^3$ Subvolumes = (full simulation volume/4096)

Suppression of Star Formation in Low-Mass Galaxies Caused by the Reionization of their Local Patch

Dawoodbhoy, **Shapiro**, Ocvirk, Aubert, Gillet, Choi, Iliev, Teyssier, Yepes, Knebe, Gottloeber, D'Aloisio, Park, Hoffman 2018, MNRAS, 480, 1740 (arXiv:1805.05358)

 Local reionization redshift field resembles underlying cosmic web of dark matter, galaxies and IGM: density peaks reionized first, while voids and underdense regions reionized last and occupy the most volume.

Local Reionization and Suppression of the SFR

- The globally-averaged suppression of SFR per halo in low-mass halos is actually the superposition of different *local* reionization and suppression histories.
- Grouping halos of different mass in bins of local reionization redshift z_{re} shows: **suppression of low-mass halos follows their** *local* **reionization**!

Low-Mass Halos: $10^8 M_{\odot} < M < 10^9 M_{\odot}$

SFR per halo vs. redshift for low-mass haloes, 10^{8-9} M_{\odot}, for different z_{re} : 2 dots on each curve indicate range of z_{re} for each bin.

Local Reionization and Suppression of the SFR

- Haloes of intermediate mass, $10^{9-10} M_{\odot}$, show suppression, too, but weaker and with a delayed turn-over.
- High-mass haloes, above 10^{10} M_{\odot}, show increasing mass-bin-averaged SFRs per halo, with no suppression turn-over.

SFR per halo vs. redshift for haloes of intermediate-mass ($10^{9-10} M_{\odot}$) and highmass (> $10^{10} M_{\odot}$), for different z_{re} : 2 dots on each curve indicate range of z_{re} for each bin (left = intermediate-mass, right = high-mass).

Q: Why is the UV LF of galaxies inhomogeneous during the EOR?

3. (SFR in ALL halos depends upon local reionization redshift)
 +

 (reionization is inhomogeneous)

CoDa II SFR in high-mass halos unsuppressed following local reionization → it just keeps rising

 $M / M_{\odot} > 10^{10}$

CoDa II: Galaxy Escape Fractions and the Ionizing Photon Budget

Lewis, Ocvirk, Shapiro, Aubert, et al 2019, to be submitted

Zoom-in on a single halo at z = 6 with $M \sim 10^{10} M_{solar}$

- Pink symbols are young star particles
- Circle is virial radius r_200
- Circle is region from which we compute f_esc by ray-tracing
- Arrows show the escaping ionizing radiation flux

f_esc: ray-tracing starlight from each halo cell

- f_{esc} is higher for lowmass halos, decreasing with halo mass
- f_{esc} for a given M_{halo} increases over time during the EOR

 There is a significant scatter in f_{esc} about the mean relationship vs. halo mass at the same redshift, greater at low mass

 The contribution of halos of different mass to the total ionizing photon emissivity of galaxies during the EOR also depends on the halo mass function.

 The halo mass range that dominates the total rate of photon release is *lower* than the mass range that dominates the total SFR density, since f_{esc} is lower for higher-mass halos.

Unattenuated luminosity

Which galaxies in the UV luminosity function dominate reionization?

> Galaxies with M_{AB1600} between -13 and -18 dominate reionization at z = 6 - 8

Deep surveys in cluster fields (e.g. Bouwens + 2017; Atek + 2018) may soon detect galaxies responsible for > 80% of reionization photons at z = 6 - 8