MAPPING THE OBSERVABLE UNIVERSE WITH 21CM

Cosmic Cartography

area ~ volume

- parameter accuracy ~ n_{mode}-1/2
- n_{mode} ~ volume
- 2D: CMB [SPT/ACT/S4]

large area galaxy imaging/spectroscopy

- **2D**: single band imaging [APM]
- **2D+**: + multi-band photo-z's [DES/LSST]
- **3D**: + lo-res spectroscopy [PAU/JPAS/SphereX/MKIDS]
- **3D**: + hi-res spectroscopy [APM/SDSS/DESI/4MOST/Euclid/WFIRST]

3D: + hi-res HydrogenIntensityMapping [CHIME/Tianlai/HIRAX/BINGO/SKA/PUMA]

Hydrogen Intensity Mapping (HIM): experiments

Hydrogen Intensity Mapping: neutral hydrogen (HI)

Intensity Mapping: technique

- intensity mapping concept: determine distribution of galaxies w/o resolving any of them by measuring the $I_v[\alpha, \delta]$.
- can only get galactic redshift this way only in parts of the EM spectrum where a single special lines "dominates" so there is no "confusion" about z[v].
- or by correlation redshifts e.g. w/21cm
- radio broad spectrum "foregrounds" will be brighter than 21cm line emission from galaxies - however this emission is very smooth spectrum and galactic 21cm lines should dominate other "wiggles: in the spectrum.
- Intensity mapping proposed for
 - HI (21cm 1.4GHz) (0≲z≲100)
 - CO (14, 29 GHz) (z≳6)
 - CII (237 GHz) (6≲z≲8)
 - Ly-α (1.2µm) (2≲z≲12)

Hydrogen Intensity Mapping: Redshift Clump Detection

One can <u>nearly</u> resolve galaxy structures in redshift space. non-Gaussian features in maps

Hydrogen Intensity Mapping: 3D Maps

21cm iso- T_{RJ} contours of slice of Alfalfa HI redshift survey includes galaxy line-widths / velocity dispersions translated to z=1 smoothed: $\delta v=100 \text{kHz} \ \delta \theta=10'$

• S/N \gtrsim 1 requires $\delta T_{\rm b} \gtrsim 100 \,\mu K$

 $T_{\rm RJ} = 1 \mu K$

• HIM easily obtains high spectral (redshift) resolution $\delta R_{co} = (1+z)^2 \frac{c}{H[z]} \frac{\delta \nu}{\nu_{21}}$ $= 2.9 \text{ Mpc} \left((1+z)^2 \frac{H_0}{H[z]} \right) \frac{\delta \nu}{MHz}$

$$\delta\theta \sim \frac{\lambda}{b_{\text{max}}} = 10' \frac{72 \text{ m}}{b_{\text{max}}} (1+z)$$
$$\delta R_{\text{co}}^{\perp} = \delta\theta \int_{0}^{z} \frac{c \, dz}{H[z]} = 10 \text{ Mpc} \frac{\delta\theta}{10'} \int_{0}^{z} dz \frac{H_{0}}{H[z]}$$

• angular resolution more difficult

Hydrogen Intensity Mapping: Galactic Foregrounds

versus ~3+K! prediction: this will be worked out by 2020

Hydrogen Intensity Mapping: ExtraGalactic Foregrounds

Must find "generic" method of source removal in order to unmask 21cm signal.

Hydrogen Intensity Mapping: Foreground Filtering

see also Wang ++ 2006

Δθ=10'

Model: Maximally Curved Synchrotron + DEEP2 galaxies

Hydrogen Intensity Mapping: The Wedge

In radio astronomy beams are always chromatic

- beam patterns on sky vary with frequency.
- this mixes angular variation which can be very non-smooth with frequency variation which might be smooth (*mode mixing*)
- lo-pass filtering in frequency will first reveal spatial variations

(complex) interferogram or visibility

time

Hydrogen Intensity Mapping: Non Smooth Foregrounds

- RFI (human made Radio Frequency Interference) often line like.
 - it is not the obvious RFI that is the problem other low level RFI will persist in data.
 - intermittent RFI will not repeat with sidereal day astrophysical sources will
- Self absorbed synchrotron may be more non-smooth
 - GPS (Gigahertz Peaked Sources) may be example of this.
- Faraday rotated linearly-polarized source will oscillate with frequency in each linear polarization but not intensity.
 - Some leakage of polarization into intensity is inevitable for off axis sources.
 - proper map-making can reduce polarization leakage

Hydrogen Intensity Mapping: Foreground Filtering

Hydrogen Intensity Mapping: Beam Calibration

foreground leakage

The Tianlai Project

Tianlai Pathfinder

Hydrogen Intensity Mapping: The Tianlai Project

Hydrogen Intensity Mapping: The Tianlai Pathfinder

Pathfinders to demonstrate basic principle and encounter all issues rapidly

- Band 685-810MHz (0.77<z<1.3)
 512 frequency channels

 (Δv=125MHz δv=244kHz δz=0.0002)
 tunable in 600-1420MHz (0<z<1.5)
- Cylinder Array 3 x 15m x 40m cylinders
 96 dual polarization feeds
 4 sec sampling
- **Dish Array** 16 x 6m dishes 16 dual polarization feeds 1 sec sampling
- Pathfinder+ Cylinder Array
 216 dual polarization feeds
 4 sec sampling
- **Proposed Full Cylinder Array** 8 x 15m x 120m 2048 dual polarization feeds 400-1420MHz

HIM: Tianlai Dish Polarscope

BY POINTING DISH ARRAY TOWARD POLE WILL INTEGRATE DOWN TO LOW MAP NOISE TEMPERATURE VERY RAPIDLY SINCE ONE IS ALWAYS POINTING AT SAME SPOT ON SKY.

HIM: Tianlai Visibility: 10 Days

example of one "good" visibility V_{3x31}. this is raw correlator data 800

11 sidereal days top to bottom 7001 2018-01-02 02:44:15 to 2018-01-11 20:44:12

brightness gives |V_{3x31}|

color gives complex phase

bright swath of fringes from Sun fringes vary because Earth rotates bow occurs when Sun passes "above" baseline direction Sun dominant source even 110° off axis

dimmer fringes still visible at night

(complex) interferogram or visibility

HIM: Tianlai Visibility: 10 Nights

nighttime only view of $V_{3\times31}$ nighttime mean subtracted for each frequency image intensified to show nighttime fringes

visibilities repeat with sidereal day period signal from the sky

fringe pattern more complicated than bow indicating multiple bright sources in 2° beam centered on North Celestial Pole

bright and dark patches constructive/destructive interference between sources

good S/N in Imin xIMHz pixels

rapid frequency fringe rate N-S baseline: large $\nu\text{-}dependent$ phase difference

variable temporal fringe rate caused by Earth rotation - sources at different declinations

HIM: Tianlai Visibility: Night Median Averaging

have good measure of visibilities from foreground sources

Hydrogen Intensity Mapping: Power Law Decomposition

Numerical Tests on Sinusoids+

One can expand a visibility covering a given band into Legendre polynomials (or any other polynomial expansion)

$$V[\nu] = \sum_{n=0}^{N} a_n P_n [\frac{2(\nu - \nu_{\text{mid}})}{\nu_{\text{max}} - \nu_{\text{min}}}]$$

the larger *n* is the less smooth the frequency dependence. A carefully designed discrete analog of this works better than a discrete Fourier transform. The integer index *n* is an analog of k_{\parallel} . For small bandwidth

$$k_{||} \approx \frac{2\pi}{\Delta R_{\rm co}} (n+1)$$

psLegendreDecomposePowerTest[Exp[300 i #] &, 512] psLegendreDecomposePowerTest[# Exp[300 i #] &, 512]

much spill-back, rapid fall-off, little spill-forward

HIM: Tianlai Visibility: Foreground Separation

Are Good Tianlai Visibilities Smooth Spectrum?

HIM: Tianlai Visibility: Foreground Subtraction

HIM: Tianlai Visibility: Foreground Separation

Power Distribution 03x31

←pseudo-m→

HIM: Tianlai Visibility: Sun Contamination Power Distribution 09x22 10 day average

n=472

←time full sidereal day→ log of power in 1min × 244kHz pixels

PUMA

Packed Ultrawideband Mapping Array formerly known as "Stage II"

PUMA

2 < z < 6 (200-500 MHz)

bandwidth smaller than CHIME/HIRAX

256 x 256 array 6m dishes

64 x HIRAX

dual polarization feeds

close packed

~ 1.5 km²

(very different design than SKA)

highly redundant baseline

correlator

FFT (n log n) or direct summation (n^{3/2}) learn from HIRAX

radial resolution ~3kHZ

~ HIRAX

Total S/N in the power spectrum

DESI limited by the number density of sources

LSST by the precision of photometric redshifts.

21cm-S2 looses sensitivity at low-k due to foreground contamination but has most volume and most accurate sampling.

DOE21 "Cosmic Visions Dark Energy: 21-cm Roadmap" Slosar & co.

Projected Cosmological Constraints

Dark Energy Density

DOE21 "Cosmic Visions Dark Energy: 21-cm Roadmap" Slosar & co.

DOE21: 21cm Roadmap

	generation 1 post reionization 0 < z < 2	generation 2 post reionization 2 < z < 6	generation 3 dark ages 30 < z < 150	context
2018-2020	data taking construction 1st results	community building		LSST/DESI ongoing stage 1 first results decadal survey submission
2020-2025	stage 1 results continuation?	R&D based on stage 1 simulations firm up science case		LSST/DESI/Stage 1 P5 submission Decadal Survey results P5 results SKA online
2025-2030		optimize design collaboration forming CD0/CD1		LSST/DESI ending SKA results
2030-2035		construction start of data taking	feasibility study preliminary design	?
2035-2040		data taking analysis	construction start of data taking	?
2040-2045			data taking analysis	?

DOE21 "Cosmic Visions Dark Energy: 21-cm Roadmap" Slosar & co.

Space Based 21cm Cosmology

Why the Far Side? (of the Moon)

• No ionosphere (atmosphere or magnetic fields)

Little human generated Radio Frequency Interference (RFI)

- 1973: Radio Astronomy Explorer B / Explorer 49
- 2018: Longjiang satellites (interferometer)
- 2018: Chang'e 4 lander (2018)

Discovering the Sky at the Longest Wavelength (DSL)

- Dark Ages Radio Explorer (DARE)
- Dark Ages Polarimeter PathfindER (DAPPER)
- Probing ReionizATion of the Universe using Signal from Hydrogen (PRATUSH)

Jester Falcke (2009) Chen Burns Koopmans et al. (2019)

Lunar Orbit DSL

Discovering the Sky at the Longest wavelengths PI: Xuelei Chen

DSL Technology and Challenges

- **1** Satellite Formation Fly in lunar orbit with large variation on scales
- **(2)** Precision Measurement of Relative Positions and synchronization
- **③** High precision calibration of phase and amplitude
- (4) Imaging algorithm with large field of view, 3D baseline distribution, and time-dependent blockage
- **(5)** Electromagnetic interference (EMI) suppression and removal

DSL Parameters

System	Parameter			
Number of Satellites	1 mother + 5~8 daughters			
Orbit	300km lunar cirlcular orbit, about 30 ⁰ inclination			
Baselines	0.1~100km			
Sensitivity	<0.1K@30MHz (1 year integration,1MHz BW)			
angular resolution	<0.2 degree@1MHz, 0.012 degree@30MHz			
Individual				
Polarization	3 linear polarization			
Frequency	1MHz~30MHz (interferometry incl. spectrum)			
requercy	30MHz~120MHz (global spectrum)			
Baseline prescision in each direction (1σ)	< 1m			
Synchronization	<3.3ns			
Inter-satellite data communication	>20Mbps each daughter satellite			

the Dark Side

thanks to Jack Burns group University of Colorado

Primordial Gravity Waves from The Dark Side

DOE21 "Cosmic Visions Dark Energy: 21-cm Roadmap" Slosar & co.

Where's the HI?

Early experiments in transportation

see also Masui et al. 2013 Anderson et al 2017

expect new 21cm detections soon (hopefully)

Hydrogen Intensity Mapping: Visibilities

- n(n+1)/2 visibilities n = # of antennae ~10²-10³
- number of frequency channels ~10³
- visibilities computed every $\delta t = 1/\delta v \sim \mu sec$
- visibilities averages over $\Delta t \sim sec$
- time ordered data produced ~10⁰-10² PByte/year
- final 3D HI maps < 1 TByte

Hydrogen Intensity Mapping: Smooth Spectrum Foregrounds

e.g. optically thin ultra-relativistic synchrotron emission

$$I_{\nu}[\vec{\theta}] = \frac{3}{4\pi^2} \frac{e^3}{m_{\rm e}c^2} \int d\ell \int d^2 \vec{\beta} \int_0^\infty d\gamma \, \frac{d^3 n_{\rm e}}{d^2 \vec{\beta} \, d\gamma} [\ell, \hat{\vec{\beta}}, \gamma] \frac{\nu}{\nu_{\rm c}} F[\frac{\nu}{\nu_{\rm c}}] \frac{\delta[\psi - \delta]}{Cos[\psi]} \qquad \nu_{\rm c} = \gamma^2 \, \frac{3eB}{4\pi \, m_{\rm e} \, c}$$

$$F[y] = y \int_{-\infty}^\infty dX \, (1 + X^2)^2 \left(K_{2/3} \left[\frac{1}{2} \, y \, (1 + X^2)^{\frac{3}{2}} \right] \right)^2 + \frac{X^2}{1 + X^2} \, K_{1/3} \left[\frac{1}{2} \, y \, (1 + X^2)^{\frac{3}{2}} \right]^2 \right)$$

F[y] is an extremely smooth function.

Fourier transform fall off as k⁻⁴.

No matter what the electron distribution is I_v will be a smooth function of v. Mono-energetic electrons / fixed B produces most non-smooth spectrum this is alway the example we will use.

In contrast 21cm line emission can be arbitrarily non-smooth

Lo-pass filtering in frequency should reveal 21cm emission

HIM: Transit Telescopes and m-Mode Analysis

- Due to *extreme* sensitivity to telescope beam pattern it is best not to move the telescope array during observation.
 - Moving optical elements wrt each other changes beam pattern.
 - so one does not "point" the telescope.
 - Earth rotation will scan the sky
 - this is a **transit telescope**
- If a transit telescope is "stable"
 - time weighted visibility $e^{-i m \varphi} V_{ij}[t]$ where $\varphi = 2 \pi t_{sidereal}/day_{sidereal}$ will only be sensitive to $e^{i m \alpha}$ component of illumination where α is right ascension (RA) in radians.
 - there is no uncertainty in RA dependence of "synthetic" beam pattern!
 - however one must determine declination (dec) dependence.
 - (non varying) astronomical sources provide a constant (RA,dec) illumination
 - non-astronomical sources in Solar System, RFI (human generated Radio Frequency Interference) do not.
- Sidereal time t_{sidereal}= Mod[t+(longitude/360°)), day_{sidereal}] angle or time: xxx° or xx^hyy^mzz^s

Cost

DOE21 "Cosmic Visions Dark Energy: 21-cm Roadmap" Slosar & co.

Hydrogen Intensity Mapping (HIM): experiments

Hydrogen Intensity Mapping: hi-k_{||} analysis

Due to chromaticity of beams non-smooth angular structure of sources will leak into frequency structure (mode mixing) filling the **foreground wedge**. Ideally the **cone of silence**, the complement of the wedge, is not contaminated by smooth spectrum sources, however there is no well defined boundary so one must determine the leakage of smooth spectrum sources into all parts of k-space.

Discover the Hilbert subspace of the "space of beams" with little contamination.

To search for non-smooth spectrum emission one might *initially* look as far away from the foreground wedge as possible, *e.g.* large k_{\parallel} for individual visibilities.

This requires no knowledge of the beam, only that $|\mathbf{k}_{\parallel}| \gg |\mathbf{k}_{\perp}|$.

At present 21cm intensity mapping experiments suffer from non-detection of 21cm emission. *"Finding it" should be a high priority*. We can do so by looking for non-smooth spectrum emission away from the wedge.

HIM: Tianlai Visibility: Nighttime Mean Subtraction

without subtraction

with subtraction

? Correlated noise / "cross talk" ?

Hydrogen Intensity Mapping: The Tianlai Site

