Cosmology and cluster astrophysics with cross-correlations of HSC WL and Planck tSZ

IAP, 12th December 2019
CoSyne: Cosmological Synergies in the upcoming decade

Ken Osato Institut d'Astrophysique de Paris

Submitted to MNRAS ArXiv: 1910.07526

Cluster Cosmology and Astrophysics

Cluster cosmology

The abundance of clusters and density profile of clusters are powerful probes into dark matter and dark energy.

The accurate mass reconstruction is critical for cluster cosmology.

Non-thermal pressure

Physical processes other than thermal pressure, e.g., **turbulence**, can also support the self-gravity of galaxy clusters. The mass under hydrostatic equilibrium (HSE) is parameterized as $M_{\rm HSE}$

Auto 2pt Correlations

<u>WL</u>

Auto 2pt Correlations

Auto 2pt Correlations

Cross 2pt Correlations

<u>WL</u>

Cross-correlations

◆Especially in the case of cross-correlation between high S/N and low S/N observables, the cross-correlation becomes more powerful!

$$\frac{(S/N)_{XY}^2}{(S/N)_{YY}^2} \gg 1$$

cf. Battaglia+ (2015) Makiya+ (2018)

Cross-Correlations of tSZ-WL

♦Measurements of tSZ-WL cross-correlations 3.5 ×10⁻⁹

The cross-correlation between thermal SZ effect and weak lensing has been measured from *Planck* and CFHTLenS (RCSLenS) data.

cf. van Waerbeke+ 2014, Hojjati+ 2016

→We can constrain both of cosmological parameters (**cosmology**) and hydrostatic mass bias (**astrophysics**) with tSZ auto-power spectrum and tSZ-WL cross-correlations.

Cross-Correlations of tSZ-WL

♦Measurements of tSZ-WL cross-correlations 3.5 ×10-9

The cross-correlation between thermal SZ effect and weak lensing has been measured from *Planck* and

3.5
3.5
WMAP

2.5
2.0
(Hojjati+, 2016)

Goal: Constraining cosmological parameters and hydrostatic mass bias parameter with tSZ auto- and

tSZ-WL cross-correlations from Planck and HSC data.

The low-mass or high-redshift clusters, which are hard to be observed through X-ray or SZ, contribute to the signal.

hydrostatic mass bias (**astrophysics**) with tSZ auto-power spectrum and tSZ-WL cross-correlations.

WL and tSZ data

+HSC S16A

Wide and deep WL survey (136.9 deg²) with mean number density

$$n_{\rm eff} = 24.6 \, {\rm arcmin}^{-2}$$
 cf. Mandelbaum+ (2017)

♦Planck tSZ map

constructed from 30 to 857 GHz data.

The sky coverage fraction is $f_{\rm sky} = 0.512$.

Measurements

- ◆ Theoretical prediction of cross spectra is based on <u>halo model</u>.
- → All matter and gas is associated with halos.

$$\begin{split} C_{\ell}^{y\kappa} &= C_{\ell}^{y\kappa(1\mathrm{h})} + C_{\ell}^{y\kappa(2\mathrm{h})} \\ C_{\ell}^{y\kappa(1\mathrm{h})} &= \int dz \, \frac{d^2V}{dzd\Omega} \int dM \, \frac{dn}{dM} y_{\ell}(M,z) \kappa_{\ell}(M,z) \\ C_{\ell}^{y\kappa(2\mathrm{h})} &= \int dz \, \frac{d^2V}{dzd\Omega} P_{\mathrm{m}}(k = \ell/D_A,z) \\ &\times \int dM_1 dM_2 \frac{dn}{dM_1} b(M_1,z) y_{\ell}(M_1,z) \frac{dn}{dM_2} b(M_2,z) \kappa_{\ell}(M_2,z) \end{split}$$

- ◆ Theoretical prediction of cross spectra is based on <u>halo model</u>.
- → All matter and gas is associated with halos.

$$\begin{split} C_{\ell}^{y\kappa} &= C_{\ell}^{y\kappa(1\mathrm{h})} + C_{\ell}^{y\kappa(2\mathrm{h})} & \text{ well calibrated with } \\ C_{\ell}^{y\kappa(1\mathrm{h})} &= \int dz \, \frac{d^2V}{dzd\Omega} \int dM \, \frac{dn}{dM} y_{\ell}(M,z) \kappa_{\ell}(M,z) \\ C_{\ell}^{y\kappa(2\mathrm{h})} &= \int dz \, \frac{d^2V}{dzd\Omega} P_{\mathrm{m}}(k=\ell/D_A,z) \\ &\times \int dM_1 dM_2 \frac{dn}{dM_1} b(M_1,z) y_{\ell}(M_1,z) \frac{dn}{dM_2} b(M_2,z) \kappa_{\ell}(M_2,z) \end{split}$$

- ◆ Theoretical prediction of cross spectra is based on <u>halo model</u>.
- → All matter and gas is associated with halos.

$$C_\ell^{y\kappa} = C_\ell^{y\kappa(1\mathrm{h})} + C_\ell^{y\kappa(2\mathrm{h})}$$
 well calibrated with N-body simulations

$$C_{\ell}^{y\kappa(1\mathrm{h})} = \int dz \, \frac{d^2V}{dz d\Omega} \int dM \frac{dn}{dM} y_{\ell}(M,z) \kappa_{\ell}(M,z) \qquad \begin{array}{c} \text{Convergence} \\ \text{Projection of} \\ \text{NFW profile} \end{array}$$

$$C_{\ell}^{y\kappa(2h)} = \int dz \, \frac{d^2V}{dz d\Omega} P_{\rm m}(k = \ell/D_A, z)$$

$$\times \int dM_1 dM_2 \frac{dn}{dM_1} b(M_1, z) y_{\ell}(M_1, z) \frac{dn}{dM_2} b(M_2, z) \kappa_{\ell}(M_2, z)$$

- ◆ Theoretical prediction of cross spectra is based on <u>halo model</u>.
- → All matter and gas is associated with halos.

$$C_\ell^{y\kappa} = C_\ell^{y\kappa(1h)} + C_\ell^{y\kappa(2h)}$$
 well calibrated with N-body simulations

$$C_{\ell}^{y\kappa(1\text{h})} = \int dz \, \frac{d^2V}{dz d\Omega} \int dM \frac{dn}{dM} y_{\ell}(M, z) \kappa_{\ell}(M, z) \qquad \begin{array}{c} \text{Convergence} \\ \text{Projection of} \\ \text{NFW profile} \end{array}$$

$$C_{\ell}^{y\kappa(2h)} = \int dz \, \frac{d^2V}{dz d\Omega} P_{\rm m}(k = \ell/D_A, z)$$

$$\times \int dM_1 dM_2 \frac{dn}{dM_1} b(M_1, z) y_{\ell}(M_1, z) \frac{dn}{dM_2} b(M_2, z) \kappa_{\ell}(M_2, z)$$

Convergence

NFW profile

Compton-y

→ Projection of pressure profile

- ◆ Theoretical prediction of cross spectra is based on <u>halo model</u>.
- → All matter and gas is associated with halos.

$$C_\ell^{y\kappa} = C_\ell^{y\kappa(1h)} + C_\ell^{y\kappa(2h)}$$
 well calibrated with N-body simulations

$$C_{\ell}^{y\kappa(1\mathrm{h})} = \int dz \, \frac{d^2V}{dz d\Omega} \int dM \frac{dn}{dM} y_{\ell}(M,z) \kappa_{\ell}(M,z) \qquad \begin{array}{c} \text{Convergence} \\ \text{Projection of} \\ \text{NFW profile} \end{array}$$

$$C_{\ell}^{y\kappa(2h)} = \int dz \, \frac{d^2V}{dz d\Omega} P_{\rm m}(k = \ell/D_A, z)$$

$$\times \int dM_{1}dM_{2} \frac{dn}{dM_{1}} b(M_{1}, z) y_{\ell}(M_{1}, z) \frac{dn}{dM_{2}} b(M_{2}, z) \kappa_{\ell}(M_{2}, z)$$

Compton-y

→ Projection of pressure profile

$$\frac{1}{2}b(M_2,z)\kappa_{\ell}(M_2,z)$$

Universal Pressure Profile
$$P_e(r) = P_{500} \left(\frac{M_{500}^{\rm HSE}}{3 \times 10^{14} \, h_{70}^{-1} \, {\rm M}_\odot} \right)^{0.12} \frac{P_0}{(c_{500} x)^{\gamma} [1 + (c_{500} x)^{\alpha}]^{(\beta - \gamma)/\alpha}}$$
 calibrated by 62 SZ clusters by *Planck*
$$M_{500}^{\rm HSE} = M_{500} (1 - b_{\rm HSE}) \;\; \mathbf{x} = \mathbf{R}/\mathbf{R}_{500}$$

Mock WL and tSZ Maps

* All-sky simulations

Takahashi+ (2017) Shirasaki+ (2015)

◆The mock measurements are used to evaluate the covariance matrix.

Analysis

Data sets

- 1. tSZ auto-power spectrum only
- 2. tSZ-WL cross-correlations only
- 3. Both of tSZ auto and tSZ-WL cross

Foreground contamination

For tSZ auto-power spectrum Bolliet+ (2018)

CIB, IR point sources, radio sources,

and correlated noise

For tSZ-WL cross-correlations Shirasaki (2019)

Radio sources (flat-spectrum radio quasars, BL Lac)

Priors on cosmological parameters

- 1. combination of low-z probes (HSC cosmic shear + JLA SN Ia + BOSS DR12 BAO/RSD)
- 2. Planck 2018 TT,TE,EE+lowE+lensing

Constraints on Parameters

Constraints on Amplitude and Mass Bias

Constraints on Amplitude and Mass Bias

All of data sets are consistent with each other and the inferred hydrostatic mass bias is ~0.3 though *low-mass or high redshift clusters* contribute to the appreciable fraction of tSZ auto-power spectrum and tSZ-WL cross-correlations.

HSC WL x ACT tSZ

♦HSC S18A WL

♦ACTPol Compton-y map

Summary

- Weak lensing and the thermal Sunyaev-Zel'dovich effect are promising probes into the large-scale structure and thermodynamical properties of intra-cluster medium.
- Cross-correlation is a powerful statistic with high S/N significance provides additional information useful for breaking degeneracy.
- In the joint analysis with tSZ auto-power spectrum and tSZ-WL cross-correlations, the hydrostatic mass bias is inferred as 0.3, which is consistent with mass calibration measurements.
- HSC is the unique WL survey which can probe into the large-scale structures and cluster astrophysics at high redshifts, and the redshift evolution by tomography.