Deconstructing M_{ν} Constraints from Galaxy Clustering and CMB Lensing

Aoife Boyle (IAP) Collaborators: Eiichiro Komatsu, Fabian Schmidt (MPA)

arXiv: 1811.07636, 1712.01857

arXiv: 1811.07636, 1712.01857

CoSyne, IAP, 10th December 2019

Aoife Boyle

Motivation

- How do different cosmological probes contribute to constraints?
- What are the most significant cosmological degeneracies?
- How sensitive are constraints from different probes to the assumed cosmology?

BAOs, RSDs, the shape of P(k), CMB lensing...

 $\tau - M_{\nu}$ degeneracy

Varying Ω_k, w_0, w_a

Extending to NLO

Desjacques, Jeong & Schmidt, 2018 (1806.04015)

 $\delta_{q}(x,\tau) = \sum b_{O}(\tau)O(x,\tau) + \epsilon$ Local bias expansion: $b_1\delta + \frac{1}{2}b_2\delta^2 + \dots$ Higher derivative bias: $b_{\nabla^2 \delta} \nabla^2 \delta$ Tidal bias: $\boldsymbol{b}_{K^2} K^2 \rightarrow K^2 = K_{ij} K^{ij}$ $\boldsymbol{b}_{td} O_{td} \rightarrow O_{td} = \frac{8}{21} K_{ij} D^{ij} \left(\delta_m^2 - \frac{3}{2} K^2 \right)$ Velocity bias: $b_{\nabla^2 v} \nabla^2 v$ Stochastic parameters: $P_{\epsilon}^{\{0\}}, P_{\epsilon}^{\{2\}}, P_{\epsilon \epsilon}^{\{2\}}$ Many of these parameters change the galaxy power spectrum in a scale-dependent way.

Calculation Details

- Fisher matrix with $k_{max} = 0.2 \text{ h/Mpc.}$
- Forecasts for Euclid spectroscopic survey and Simons Observatory.
- Start with Planck TT, Simons Observatory EE/TE, $\sigma(\tau)$ =0.008.
- Free parameters:
 - $\omega_b, \omega_c, A_s, n_s, \theta_s, \tau$
 - M_{ν} , $N_{\rm eff}$
 - $(+\Omega_k, w_0, w_a)$

Full Power Spectrum Constraints

Planck TT, Simons Observatory EE/TE, $\sigma(\tau) = 0.008$, Euclid $P_{gg}(k, \mu) \rightarrow 0.2 h/Mpc$.

 $\begin{array}{c} \text{Linear } P_{gg}(k,\mu) \\ \text{arXiv: 1811.07636, 1712.01857} \end{array}$

$M_{\nu} - \tau$ Degeneracy (Linear Case)

Planck TT, Simons Observatory EE/TE, $\sigma(\tau) = 0.008$ /Fixed, Euclid $P_{gg}(k, \mu) \rightarrow 0.2 h$ /Mpc.

CoSyne, IAP, 10th December 2019

$M_{\nu} - \tau$ Degeneracy (NLO Case)

Planck TT, Simons Observatory EE/TE, $\sigma(\tau) = 0.008$ /Fixed, Euclid $P_{gg}(k, \mu) \rightarrow 0.2 h$ /Mpc.

CoSyne, IAP, 10th December 2019

Degeneracies with New Parameters

- The bias and stochastic parameters are primarily *all somewhat degenerate with each other*.
- Adding priors on any particular one does not significantly improve constraints on the neutrino mass.

CMB Lensing (Linear Case)

Planck TT, Simons Observatory EE/TE, $\sigma(\tau) = 0.008$, Euclid $P_{gg}(k, \mu) \rightarrow 0.2 \ h/Mpc$, Simons Observatory CMB Lensing

arXiv: 1811.07636, 1712.01857

CoSyne, IAP, 10th December 2019

Aoife Boyle

CMB Lensing (NLO Case)

Planck TT, Simons Observatory EE/TE, $\sigma(\tau) = 0.008$, Euclid $P_{gg}(k, \mu) \rightarrow 0.2 h/Mpc$, Simons Observatory CMB Lensing

arXiv: 1811.07636, 1712.01857

CoSyne, IAP, 10th December 2019

Aoife Boyle

Cosmology-Independent Constraints

- Isolating the relative suppression in the power spectrum caused by massive neutrinos provides a cosmology-independent measurement of M_{ν} .
- This suppression is actually enhanced in the NLO case.

Method:

- $P_m(k) = P_1 \cdot P_2(k)$
- Calculate $\partial P_{gg}(k,\mu)/\partial \theta$ holding P_1 fixed and varying only $P_2(k)$.
- Smooth out BAO wiggles.
- Marginalise over P_1 .

Cosmology-Independent Constraints

Planck TT, Simons Observatory EE/TE, $\sigma(\tau) = 0.008$, Euclid P_{gg} (shape only) $\rightarrow 0.2 h$ /Mpc, Simons Observatory CMB Lensing (shape only)

BAO-Only Constraints

Planck TT, Simons Observatory EE/TE, $\sigma(\tau) = 0.008$, Euclid BAOs $\rightarrow 0.2 h$ /Mpc, Simons Observatory CMB Lensing

CoSyne, IAP, 10th December 2019

Conclusions

Considering the 1-loop power spectrum has a significant qualitative and quantitative impact on neutrino mass constraints.

- 7 new free parameters \rightarrow full combined constraints degrade by 25 40 %, cosmologyindependent free-streaming constraints degrade by 20 %, BAO-only constraints barely change. **Realistic constraints, even up to k=0.2 h/Mpc, should include these** parameters.
- au is less important than previously thought.
- CMB lensing becomes less irrelevant.
- Free-streaming constraints remain cosmology-independent, though weaker.

Neutrino mass constraints (apart from the free-streaming only constraints we developed) are strongly cosmology dependent.