CoSyne, IAP, Paris, 10.12.2019

J. Lesgourgues

Institut für Theoretische Teilchenphysik und Kosmologie (TTK), RWTH Aachen University

Hot topics in Particle Cosmology - J. Lesgourgues

After Planck: strong bounds on total neutrino mass, about to rule out Inverted Hierarchy

For 7-param Λ CDM + M_{ν} , 95%CL:

Future bounds

We are excluding ~100 meV at 2 sigma...

... but detecting 60 meV at several sigmas will be very difficult!

Enemy: not non-linear effects (non-linear growth, baryonic feedback, ...),

but parameter degeneracies.

ticle Physics

$M_{ u}$ effects on CMB

Neutrino mass effects on lensed P(k, z = 0) with fixed { ω_b , ω_c , θ_s , τ_{reio} , A_s , n_s } ($\Rightarrow \underline{z_{eq}}$)

$M_{ m u}$ effects on LSS

Neutrino mass effects on lensed P(k, z = 0) with fixed { ω_b , ω_c , θ_s , τ_{reio} , A_s , n_s } ($\Rightarrow z_{eq}$)

$$\begin{split} M_{\nu} \text{ effects on LSS} \\ \text{Neutrino mass effects on lensed } C_{l}^{\phi\phi} \text{ with fixed } \{ \underbrace{\omega_{b}, \omega_{c}, \theta_{s}}_{\blacksquare}, \tau_{reio}, A_{s}, n_{s} \} \ (\Rightarrow \underbrace{z_{eq}}_{\blacksquare}) \\ \text{Small mass} \end{split}$$

Trying to differentiate 50 meV from 150 meV with fixed { ω_b , ω_c , θ_s , τ_{reio} , A_s , n_s } ($\Rightarrow z_{eq}$) Pink = cosmic variance Green = CORE

TT: below cosmic variance

Trying to differentiate 50 meV from 150 meV with fixed { ω_b , ω_c , θ_s , τ_{reio} , A_s , n_s } ($\Rightarrow z_{eq}$) Pink = cosmic variance Green = CORE

EE: below cosmic variance

Trying to differentiate 50 meV from 150 meV with fixed { ω_b , ω_c , θ_s , τ_{reio} , A_s , n_s } ($\Rightarrow z_{eq}$) Pink = cosmic variance Green = CORE

 $\phi\phi$: above cosmic variance over a wide range of multipoles Could be detectable *if* not degenerate with other parameters...

12 / 20

Neutrino mass from Cosmology - J. Lesgourgues

Is it possible to increase the overall amplitude of $C_l^{\phi\phi}$ by ~3% without spoiling the good fit to $C_l^{TT,TE,EE}$?

$$\ell^4 C_\ell^{\phi\phi} \propto A_s \omega_m^{3/2} h^{-1/2} M_\nu^{-\alpha}$$

1. Increase A_s by 3% and decrease τ_{reio} by $\frac{1}{2} \ln 1.03 = 0.015$ to keep $A_s e^{-2\tau_{reio}}$ constant?

NO: $\sigma(\tau_{reio}) = 0.008$ (Planck) or 0.002 (LiteBird/CORE). So CMB alone can probe M_{ν} , but accuracy potentially limited by correlation $M_{\nu} \leftrightarrow \tau_{reio}$.

2. Decrease ω_c and compensate small changes in $C_l^{TT,TE,EE}$ with other parameters like n_s ? Works better: correlation $M_{\nu} \leftrightarrow \omega_c$ much stronger than $M_{\nu} \leftrightarrow \tau_{reio}$ with CMB alone.

Conclusions: CMB alone can detect small masses, but sensitivity limited by partial degeneracies: first $M_{\nu} \leftrightarrow \omega_c$, second by $M_{\nu} \leftrightarrow \tau_{\rm reio}$

Neutrino mass from Cosmology - J. Lesgourgues

Detectability and degeneracies with CMB alone

BAO probe different direction in { M_{ν} , H_0 }space : much better M_{ν} determination

Detectability and degeneracies with CMB + BAO + cosmic shear surveys

Cosmic shear surveys add sensitivity to M_{ν} at different z that reduces $M_{\nu} \leftrightarrow H_0$, $M_{\nu} \leftrightarrow \omega_c$ and n_s

Comparison of 60 meV to 150 meV (dashed red line) Pink = Euclid CS uncertainty Green = additional theoretical error

Archidiacono et al. 1610.09852

Detectability and degeneracies with CMB + BAO + cosmic shear/galaxy surveys

Galaxy surveys adds a lot of sensitivity to A_s, M_{ν} at different z and reduces $M_{\nu} \leftrightarrow \tau_{\text{reio}}$ and A_s

Comparison of 60 meV to 150 meV (dashed red line) Pink = Euclid CS uncertainty Green = additional theoretical error

First conclusions: we need to combine CMB, BAO, and shear / galaxy / 21cm surveys!

- CMB constrains several directions in $\{\omega_b, \omega_c, \theta_s, \tau_{reio}, A_s, n_s\}$ space and bounds $\{A_s, \tau_{reio}\}$: large scales for τ_{reio} (LiteBird/CORE), small scales for lensing and A_s (Stage4/Sim.Obs.)
- BAO removes $M_{\nu} \leftrightarrow H_0$ degeneracy
- shear / galaxy / 21cm surveys measure overall P(k, z) amplitude (on all scales: non-linear scales not so crucial)

Then neutrino mass explains apparent mismatch between $C_l^{TT,TE,EE}$ amplitude: $A_s e^{-2\tau_{reio}}$ and P(k,z) amplitude: $A_s(1 - \alpha(z)M_{\nu})$

What could ruin this?

18 / 20

- > \$\mathcal{O}(1\%)\$ uncertainty on global amplitude of \$P(k, z)\$ (Euclid: 2.5\% uncertainty on linear bias and its redshift dependence index, correlated across the bins)
 What could improve it?
- Independent measurement of H_0 or $au_{
 m reio}$

Neutrino mass from Cosmology - J. Lesgourgues

First conclusions

Archidiacono et al. 1610.09852

What could improve it?

- Independent measurement of H_0 or $au_{
m reio}$

Neutrino mass from Cosmology - J. Lesgourgues

Conservative MCMC forecasts

Conservative MCMC forecasts with theoretical error bar (assuming $M_v=0.06eV$):

