

# Scalar-field dark matter versus standard CDM: looking for deviance

### Tanja Rindler-Daller

**Elise Richter Fellow** 

Institut f. Astrophysik, Univ.Sternwarte Wien, Univ. of Vienna

with Paul R. Shapiro (U Texas, Austin) and Bohua Li (Tsinghua U, Beijing)

CoSyne 2019, Institut d'astrophysique de Paris

Li, Shapiro, Rindler-Daller 2017 PRD, 96, 063505 (arXiv: 1611.07961) Li, Rindler-Daller, Shapiro 2014 PRD, 89, 083536 (arXiv: 1310.6061)

# Scalar-field dark matter (SFDM)

"a zoo of (similar) animals"



### repulsive / fluid DM

(strong, positive self-interaction)

They all obey a similar EoM, if an effective classical field description is adopted; its physics gives rise to a minimum clustering scale. To "resolve" galactic small-scale problems, need <u>ultralight</u> particles

 $10^{-23} \text{ eV} \le m \le 10^{-20} \text{ eV}$ 

#### SFDM and power spectra

#### Ureña-Lopez & Gonzalez-Morales (2016)



**Note:** my talk focuses on deviations from CDM on a grand scale, in fact wrt the evolution of the background universe !!

How much "deviance" is allowed ?

- $\rightarrow$  Neff and GWs help to find out
  - → constrain SFDM particle parameters

### Scalar Field Dark Matter (SFDM)

real or complex scalar field  $\psi$  (model-dependent)

$$\mathscr{L} = \frac{\hbar^2}{2m} g^{\mu\nu} \partial_\mu \psi^* \partial_\nu \psi - V(\psi)$$

units:  $[L] = [eV/cm^3], [\psi] = cm^{-3/2}, (+,-,-,-)$ 

#### $V(\psi)$ is model-dependent

QCD axion, ALPs:  $V_a = f_a^2 m_a^2(t) [1 - \cos(a/f_a)]$ 

 $\rightarrow$  upon expansion: quadratic (+ quartic)

phi^4 - potential: 
$$V(\psi) = \frac{1}{2}mc^2|\psi|^2 + \frac{\lambda}{2}|\psi|^4$$
  $\lambda = \hat{\lambda} \frac{\hbar^3}{m^2c}$ 

*Quartic term:*  $\lambda$  is an energy-independent coupling constant,  $\lambda > 0$ : repulsive,  $\lambda < 0$ : attractive

#### $\rightarrow$ fundamental SFDM parameters: m and $\lambda$

### Scalar Field Dark Matter (SFDM)

#### if $\psi$ is <u>complex</u> $\rightarrow$ U(1)-symmetry, particle number conserved $\rightarrow$ no self-annihilation ! $\rho_{SEDM,0} = n_{SEDM,0}mc^2 = \Omega_{DM}\rho_{crit,0}$

if  $\psi$  is <u>real</u>  $\rightarrow$  no U(1) symmetry, self-annihilation, but particle number approximately conserved in the non-relativistic limit

Equation of states (EOS) encountered: "oscillation" 0 < w < 1/3"slow-roll" w = -1"fast-roll" w = 1

Eventually, in order to behave **"CDM-like"** ( $w_{average} = 0$ ): need quadratic term (all models require  $w_{average} = 0$  after  $z_{eq} \rightarrow$  imposes important constraint !)

#### **Equations of motion (EoM)**

Klein-Gordon equation for the SFDM field  $\psi$ 

$$g^{\mu\nu}\partial_{\mu}\partial_{\nu}\psi - g^{\mu\nu}\Gamma^{\sigma}_{\ \mu\nu}\partial_{\sigma}\psi + \frac{m^{2}c^{2}}{\hbar^{2}}\psi + \frac{2\lambda m}{\hbar^{2}}|\psi|^{2}\psi = 0$$

...which is minimally coupled to GR

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

A standard flat FLRW background Universe is usually assumed.

(<u>side remark:</u> In the "CDM-like" SFDM-dominated epoch, well within the horizon, the non-relativistic limits yield a nonlinear Gross-Pitaevskii ("Schrödinger") equation:)

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\Delta\psi + \lambda|\psi|^2\psi + m\Phi\psi$$
$$\Delta\Phi = 4\pi Gm|\psi|^2$$

## **Evolution of background SFDM in an FLRW Universe**

Compare size of SF oscillation freq  $\boldsymbol{\omega}$  to Hubble expansion rate  $\boldsymbol{H}$ 



kinetic energy  $\neq 0$ : w = 1 stiff EOS ("kination", "stiff phase")

Non-standard expansion histories and consequences for structure formation !

#### real vs. complex SFDM

- Real e.g. QCD axion, axion-like particles: first w = -1 (CC phase), later w = 0 (CDM-like phase)
- **Complex** e.g. our model, Arbey et al.(2002), Boyle et al.(2003): first w = 1 (stiff phase), later w = 0 (CDM-like phase) if  $\lambda > 0 \rightarrow w = 1/3$  (intermediate rad.-like phase)

**Real:** whether EOS stiffer than w = 0 depends on choice of potential and initial condition. That choice is usually set the same than for axions  $\rightarrow$  CC **Complex:** the requirement of setting the (conserved) charge density to the present-day DM abundance leads naturally to the stiff phase !

• SFDM with w  $\gtrsim 1/3$  affects  $\Delta N_{eff}$  =  $N_{eff}$  – 3.046  $\,$  !

While w = 0 required not later than  $z_{eq}$ , deviations are allowed before BBN, but lead to constraints on the SFDM model !

### **Field oscillations of SFDM: real vs. complex**

e.g. in the "CDM-like" SFDM-dominated epoch ("matter domination"):

the average w oscillates around zero, however:

#### **Real field:**

Complex field (large-charge limit):

w oscillates between -c and +c where c <<< 1



impacts structure formation, down to pulsar-timing signals within the Milky Way !

w oscillates between -1 and 1

#### real vs. complex SFDM: evolution of $\Omega$ 's



 $(m, \lambda)_{\text{fiducial}} = (3 \times 10^{-21} \text{ eV/c}^2, 1.8 \times 10^{-59} \text{ eV cm}^3)$ 

Li,TRD,Shapiro (1310.6061)

### cSFDM with repulsive SI has 3 phases:

10<sup>80</sup> EOS:  $(p/\rho)_{SEDM} = W(t)$ a<sub>nuc</sub> a<sub>n/p</sub> a<sub>reheat</sub> a<sub>ea</sub> 10<sup>70</sup> (1) Early: w = 1Stiff 10<sup>60</sup> ) (stiff EOS)  $\begin{pmatrix} 10^{50} \\ e^{-1} \\ 10^{50} \end{pmatrix} = \begin{pmatrix} 10^{50} \\ 10^{40} \\ 10^{30} \\ 10^{20} \end{pmatrix}$ (w=1) (2) Intermediate: w = 1/3(radiationlike, if positive SI) (3) Late: w = 0Radiationlike (non-relativistic matter) (w=1/3) $\rightarrow$  change of standard 10<sup>20</sup>  $\lambda/(mc^2)^2 = 1 \times 10^{-18} \text{ eV}^{-1} \text{ cm}^3$ m=8×10<sup>-21</sup> eV/c<sup>2</sup> expansion history ! CDM-like (w=0) 10<sup>10</sup>  $\Omega_{SFDM} \rightarrow 1$  at early times  $10^{0}$ 10<sup>-16</sup>  $10^{-8}$  $10^{-12}$ 10<sup>-4</sup>  $10^{0}$ scale factor

> Early Universe dominated by stiff cSFDM ! → implies additional N<sub>eff</sub> during (1) and (2) ! → amplifies primordial GWs from inflation during (1) !

### **ASFDM Model** (2014) + GW (2017)

**2014:** take the same cosmic inventory as the basic  $\Lambda$ CDM model, except that CDM is replaced by SFDM  $\rightarrow \Lambda$ SFDM

2017: add stochastic GW background (SGWB) from inflation self-consistently to it

$$\Omega_{\rm m} = \Omega_{\rm b} + \Omega_{\rm c}$$

(assume massless SM neutrinos)  $\Omega_{\Lambda} = 1 - \Omega_{m} - \Omega_{r}$  (2014)

$$\Omega_{\Lambda} = 1 - \Omega_{m} - \Omega_{r} - \Omega_{GW}$$
(2017)

• SFDM particle parameters: m,  $\lambda/(mc^2)^2$  $\lambda/(mc^2)^2 = 1 \times 10^{-18} \text{ eV}^{-1} \text{ cm}^3 \implies l_{st} \approx 0.8 kpc$ 

$$\mathcal{L} = \frac{\hbar^2}{2m} g^{\mu\nu} \partial_\mu \psi^* \partial_\nu \psi - \frac{1}{2} mc^2 |\psi|^2 - \frac{\lambda}{2} |\psi|^4,$$

Global U(1) symmetry  $\Rightarrow$  Charge (particle number density) conservation  $Q \equiv n - \overline{n} = \rho_{sFDM,0} / (mc^2)$ 

- Tensor-to-scalar ratio:  $r = A_T/A_S$
- Reheating temperature: T<sub>reheat</sub>

$$H_{\rm inf} = rac{\pi M_{\rm pl}}{\hbar} \sqrt{rA_s}$$
 inflationary paradigm

# Stochastic Gravitational-Wave Background from Inflation



# Single-field slow-roll inflation

- r > 0.001
- Consistency relation n<sub>t</sub> = -r/8

Subhorizon inflationary SGWB energy density spectrum:

$$\Omega_{GW}(k,a) = \frac{\Delta_{h,init}^{2}(k)}{12} \left(\frac{kc}{aH}\right)^{2} T_{h}(k,a), \qquad \Delta_{h,init}^{2}(k) = A_{T}(k/k_{*})^{n_{t}}$$

### $\rho_{GW}$ (t): Tensor Mode Perturbations in the ASFDM Universe

Tensor mode equation of motion in Fourier space:  $\begin{aligned} h_k''(\tau) + 2\frac{a'(\tau)}{a(\tau)}h_k'(\tau) + k^2h_k(\tau) &= 0 \end{aligned} \\ & \text{GW spectrum vs. k} \\ & \text{at scale factor a(t):} \end{aligned} \qquad \begin{aligned} & \Omega_{\text{GW}}(k,a) \equiv \frac{\mathrm{d}\Omega_{\text{GW}}(a)}{\mathrm{d}\ln k} = \frac{1}{\rho_{\text{crit}}(a)}\frac{\mathrm{d}\rho_{\text{GW}}(a)}{\mathrm{d}\ln k} \\ & = \frac{\Delta_h^2(k,a)c^2}{24a^2H^2(a)}\left(\left|\frac{h_k'(a(\tau))}{h_k(a(\tau))}\right|^2 + k^2\right) \end{aligned}$ 

• In subhorizon limit, different modes contribute to  $\rho_{GW}$  (t) according to the expansion phase during which they re-entered the horizon, how many e-foldings elapse in each phase since horizon crossing, and the initial power spectrum:  $\Delta_{h,\text{init}}^2(k) \simeq k^0$ 

w = 0 (reheating era)  $\bigstar$   $\Omega^{\rm m}_{\rm GW}(k,\tau) \simeq \frac{\Delta^2_{h,{\rm init}}(k)}{24} \cdot \frac{9}{4} \frac{1}{(k\tau)^2}$ , Red tilt

w = 1 (stiff-SFDM-dominated) era ←→

$$\Omega_{\rm GW}^{\rm stiff}(k,\tau) \simeq \frac{\Delta_{h,\rm init}^2(k)}{24} \cdot \frac{8}{\pi} k\tau, \quad \text{Blue}$$

tilt

 $\Omega_{\rm GW}^{\rm rad}(k,\tau) \simeq \frac{\Delta_{h,{\rm init}}^2(k)}{24}.$ 

w = 1/3 (radiation-dominated era)  $\leftarrow \rightarrow$ 

# **Holistic Evolution of the ASFDM Universe**

Friedmann equation

$$H^{2}(t) \equiv \left(\frac{\mathrm{d}a/\mathrm{d}t}{a}\right)^{2} = \begin{cases} H_{\mathrm{inf}}^{2}, & a < a_{\mathrm{inf}}, \\ H_{\mathrm{inf}}^{2} \left(\frac{a_{\mathrm{inf}}}{a(t)}\right)^{3}, & a_{\mathrm{inf}} < a < a_{\mathrm{reheat}} \\ \frac{8\pi G}{3c^{2}} \left[\rho_{r}(t) + \rho_{b}(t) + \rho_{\Lambda}(t) + \rho_{\mathrm{SFDM}}(t) + \rho_{\mathrm{GW}}(t)\right], & a > a_{\mathrm{reheat}}, \end{cases}$$

SGWB contribution to the expansion history *self-consistently* included

$$\Omega_{\rm GW}(k,a) \equiv \frac{\mathrm{d}\Omega_{\rm GW}(a)}{\mathrm{d}\ln k} = \frac{1}{\rho_{\rm crit}(a)} \frac{\mathrm{d}\rho_{\rm GW}(a)}{\mathrm{d}\ln k}$$
$$= \frac{\Delta_h^2(k,a)c^2}{24a^2H^2(a)} \left( \left| \frac{h'_k(a(\tau))}{h_k(a(\tau))} \right|^2 + k^2 \right)$$
conformal time:  $d\tau \equiv dt/a(t)$ 

Klein-Gordon Equation

$$\frac{\hbar^2}{2mc^2}\ddot{\psi} + 3\frac{\hbar^2}{2mc^2}\frac{\dot{a}}{a}\dot{\psi} + \frac{1}{2}mc^2\psi + \lambda|\psi|^2\psi = 0,$$



**ASFDM+Inflation: the Universe has 6 eras** 

# N<sub>eff</sub> during BBN



<u>Limiting the duration of the stiff phase after reheating and before BBN</u> <u>constrains SFDM parameters via their contribution to N<sub>eff</sub></u>

- for given r: the smaller the DM mass, the later must reheating occur
- Matter-radiation equality:



• N<sub>eff</sub> during BBN:

$$\frac{\Delta N_{\rm eff,BBN}(a)}{N_{\rm eff,standard}} = \frac{\Omega_{\rm SFDM}(a) + \Omega_{\rm GW}(a)}{\Omega_{\nu}(a)}$$



Constraints from z<sub>eq</sub> and BBN on the SFDM parameters with GW background included



Zeq = 3365 +/- 44 (68% C.L.)

Neff, BBN = 3.56 +/- 0.23 (68% C.L.)

# Constraints from z<sub>eq</sub> and BBN on the SFDM parameters with GW background included

$$2.3 \times 10^{-18} \text{ eV}^{-1} \text{ cm}^3 \leq \frac{\lambda}{(\text{mc}^2)^2} \leq 4.1 \times 10^{-17} \text{ eV}^{-1} \text{ cm}^3,$$
$$m_{\text{min}} \simeq (5 \times 10^{-21} \text{ eV}/c^2) \times \begin{cases} \frac{T_{\text{reheat}}}{10^3 \text{ GeV}} \sqrt{\frac{r}{0.01}}, & T_{\text{reheat}} \gtrsim 10^3 \text{ GeV},\\ 1, & T_{\text{reheat}} < 10^3 \text{ GeV}. \end{cases}$$

#### **Cosmological Constraints on the SFDM Particle Parameters**

• Matter-radiation equality:  $z_{eq}$ 1  $\Omega_b h^2 + \Omega_c h^2$ 

$$1 + z_{\rm eq} \equiv \frac{1}{a_{\rm eq}} = \frac{\Omega_b h^2 + \Omega_c h^2}{\Omega_r h^2 + \Omega_{\rm GW} h^2},$$

Effective number of neutrino species at BBN: N<sub>eff</sub>

$$\frac{\Delta N_{\rm eff,BBN}(a)}{N_{\rm eff,standard}} = \frac{\Omega_{\rm SFDM}(a) + \Omega_{\rm GW}(a)}{\Omega_{\nu}(a)},$$

SGWB measured by laser interferometers:

 $\Omega_{GW}(f)$  at a=1

### $\rho_{GW}$ (t): Tensor Mode Perturbations in the ASFDM Universe

Tensor mode equation of motion in Fourier space:  $\begin{aligned} h_k''(\tau) + 2\frac{a'(\tau)}{a(\tau)}h_k'(\tau) + k^2h_k(\tau) &= 0 \end{aligned} \\ & \text{GW spectrum vs. k} \\ & \text{at scale factor a(t):} \end{aligned} \qquad \begin{aligned} & \Omega_{\text{GW}}(k,a) \equiv \frac{\mathrm{d}\Omega_{\text{GW}}(a)}{\mathrm{d}\ln k} = \frac{1}{\rho_{\text{crit}}(a)}\frac{\mathrm{d}\rho_{\text{GW}}(a)}{\mathrm{d}\ln k} \\ & = \frac{\Delta_h^2(k,a)c^2}{24a^2H^2(a)}\left(\left|\frac{h_k'(a(\tau))}{h_k(a(\tau))}\right|^2 + k^2\right) \end{aligned}$ 

• In subhorizon limit, different modes contribute to  $\rho_{GW}$  (t) according to the expansion phase during which they re-entered the horizon, how many e-foldings elapse in each phase since horizon crossing, and the initial power spectrum:  $\Delta_{h,\text{init}}^2(k) \simeq k^0$ 

w = 0 (reheating era)  $\bigstar$   $\Omega^{\rm m}_{\rm GW}(k,\tau) \simeq \frac{\Delta^2_{h,{\rm init}}(k)}{24} \cdot \frac{9}{4} \frac{1}{(k\tau)^2}$ , Red tilt

w = 1 (stiff-SFDM-dominated) era ←→

$$\Omega_{\rm GW}^{\rm stiff}(k,\tau) \simeq \frac{\Delta_{h,\rm init}^2(k)}{24} \cdot \frac{8}{\pi} k\tau, \quad \text{Blue}$$

tilt

 $\Omega_{\rm GW}^{\rm rad}(k,\tau) \simeq \frac{\Delta_{h,{\rm init}}^2(k)}{24}.$ 

w = 1/3 (radiation-dominated era)  $\leftarrow \rightarrow$ 

### enhanced signal of inflationary SGWB due to DM !

#### <u>Stiff-SFDM-dominated era</u> amplifies SGWB from (standard) inflation: can be measured/constrained by GW laser interferometers !



Case 2

**ASFDM predicts 2-parameter broken power-law spectrum at high frequencies:** 

$$\Omega_{GW}(f) = \Omega_{GW,peak} \times \begin{cases} f / f_{peak}, & f \leq f_{peak} \\ \frac{9\pi}{64} (f / f_{peak})^{-2}, & f > f_{peak} \end{cases}$$

### enhanced signal of inflationary SGWB due to DM !

<u>Stiff-SFDM-dominated era</u> amplifies SGWB from (standard) inflation: can be measured/constrained by GW laser interferometers !



Upper limit from LIGO O1 data excludes case 2 at 95% CL

→ <u>The Age of DM Search/Constraints by GW Detection has begun !</u>

<u>Stiff-SFDM-dominated era</u> amplifies SGWB from (standard) inflation: can be measured/constrained by GW laser interferometers !

#### $T_{reheat} = 10^3 \text{ GeV}$ neutrino decoupling present $10^{-1}$ initial LIGO/Virgo $r = 0.01, n_t = -r/8$ 10<sup>-3</sup> $\lambda/(mc^2)^2 = 1 \times 10^{-18} eV^{-1} cm^3$ 10<sup>-5</sup> eLISA m=8×10<sup>-21</sup> eV/c<sup>2</sup> aLIGO/Virgo 10<sup>-7</sup> 01 Ω<sub>GW</sub>(f) EPTA NANOGRAV 05 10<sup>-9</sup> PPTA\* 20-86 Hz 10<sup>-11</sup> **ASFDM** CMB 10<sup>-13</sup> $r_{0.05} < 0.07$ **ACDM** 10<sup>-15</sup> 10<sup>-17</sup> 10<sup>-20</sup> 10<sup>-12</sup> 10<sup>-16</sup> 10<sup>-8</sup> 10<sup>4</sup> $10^{-4}$ 10<sup>8</sup> 10<sup>0</sup> frequency (Hz)

#### Case 1

#### <u>Stiff-SFDM-dominated era</u> amplifies SGWB from (standard) inflation: can be measured/constrained by GW laser interferometers !

#### Case 3



#### Stiff-SFDM-dominated era amplifies SGWB from inflation

SGWB's from (SFDM + Inflation) vs. (Unresolved BH + BH and NS + NS Binary Mergers)



#### Limits from O1 of LIGO (1612.02029):



| D1 | 2015-2016 | $(8.75 \times 10^3, 1.7 \times 10^5)$ | $(7 \times 10^{-20}, 1.36 \times 10^{-18})$ |
|----|-----------|---------------------------------------|---------------------------------------------|
| 05 | 2020-2022 | $(5 \times 10^2, 1.5 \times 10^7)$    | $(4 \times 10^{-21}, 10^{-16})$             |

# A detection of the inflationary SGWB is possible by looking for signals:

a wide range of SFDM particle parameters and reheat temperatures can be already tested by **aLIGO/VIRGO limits on the SGWB**:

- some models (e.g. "Case 2") are already ruled out from O1 limits
- the newest O2 limit does not exclude "Case 1" and "Case 3", but other models are ruled out, which may push beyond the allowed limit
- even more models will be tested by the time of O5

# → current(!) GW laser interferometer experiments can already constrain DM models !

Bohua Li, Tanja Rindler-Daller, Paul R. Shapiro 2014, PRD, 89, 083536 (arXiv: 1310.6061)

Bohua Li, Paul R. Shapiro, Tanja Rindler-Daller 2017, PRD, 96,063505 (arXiv: 1611.07961)

# Conclusions

- SFDM candidates may resolve small-scale problems of CDM *structure formation*
- However, deviations from CDM are also possible on large scales:
  - non-standard expansion histories before and after BBN
  - manifest field oscillations distinguish SFDM from CDM, and amplitudes differ between real and complex scalar-fields
- As a result: SFDM model parameters are constrained by the CMB, BBN, stochastic grav.wave background from inflation, large-scale structure, pulsar-timing, etc.
- Some of these constraints are already tighter than those inferred from small-scale structure

Li, Shapiro, Rindler-Daller 2017 PRD, 96, 063505 (arXiv:1611.07961) Li, Rindler-Daller, Shapiro 2014 PRD, 89, 083536 (arXiv: 1310.6061)