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STRONG GRAVITATIONAL LENSING

Formation of multiple images of a single distant object due to the
deflection of its light by the gravity of intervening structures.







Lensing galaxy

Two images of a
background
quasar




Strong lenses produce arcs







SCIENCE MOTIVATIONS FOR STRONG LENSING

1- Background source:

Use strong lensing as a cosmic telescope.

2- Foreground lens:

Use lensing to probe the distribution of matter in the lensing structures.

* Other things (cosmology, testing GR, etc.)



SCIENCE MOTIVATIONS FOR STRONG LENSING

1 - Use strong lensing as a cosmic telescope.
Lensing magnifies the images of sources and makes them appear brighter.

This allows us to study some of the most distant galaxies of the universe that
would have been otherwise below our sensitivity or resolution limits.

unlensed image lensed image

SPT-SMG COLLABORATION:

Use lenses to study star formation in the background galaxies
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SCIENCE MOTIVATIONS FOR STRONG LENSING

2 - Use lensing to probe the distribution of matter in the lensing structures.
o Distortions in images are caused by gravity.

© They can be used to map the distribution of matter in the lens.

o Particularly useful for studying dark matter.




SMALL-SCALE STRUCTURE OF DARK MATTER

Small scale distribution of

Large scale structure is very dark matter is not well

well measured.
understood.



THE MISSING SATELLITES PROBLEM

DISCREPANCY BETWEEN THE NUMBER OF CDM SUBHALOS AND MW DWARF SATELLITES

N-BODY SIMULATIONS - *  OBSERVED MW SATERLITES

Sontana

THEORY: N~ 10000 OBSERVATION N~50



SOLUTIONS

1 - Modify galaxy formation models 2 - Modity the dark matter model

2 keV Warm Dark Matter

Cold Dark Mafter

Lovell et al., MNRAS, 2012



STRONG GRAVITATIONAL LENSING

background galaxy

foreground galaxy




SUBSTRUCTURE LENSING




SUBSTRUCTURE LENSING







SPOT THE DIFFERENCE?

Main lensing galaxy mass ~ 1012— 1078 Msun

Subhalo masses ~ 107—109 Mesun

SMOOTH GALAXY SMOOTH GALAXY + SUBHALO




MEASURING PHYSICAL PROPERTIES
FROM IMAGES OF STRONG LENSES

Physical properties that can be constrained from
lensing images (lensing parameters).

1. Morphology of the background source
(the true, undistorted image of the candle)

2 Matter distribution in the lens
(the shape of the wineglass)




MEASURING PHYSICAL PROPERTIES
FROM IMAGES OF STRONG LENSES

simulating lenses

SIMULATED IMAGE




MEASURING PHYSICAL PROPERTIES
FROM IMAGES OF STRONG LENSES

maximum likelihood lens modeling

SIMULATED IMAGE

A MEASURE OF
SIMILARITY

OBSERVED IMAGE



MEASURING PHYSICAL PROPERTIES

FROM IMAGES OF STRONG LENSES

maximum likelihood lens modeling

SIMULATED VISIBILITIES
(A DISCRETE SET OF FOURIER COMPONENTS)

~—
2
LLS
£
o

A MEASURE OF

SIMILARITY

Likelihood

OBSERVED VISIBILITIES



SUBHALO DETECTION:
COMPARE A SMOOTH MODEL WITH A MODEL WHICH INCLUDES SUBHALOS

BACKGROUND
SOURCE

SIMULATED IMAGE

OBSERVED IMAGE



LENS MODELING PIPELINE

Problem:

Millions of visibilities.
Tens of thousands of parameters.

Dense linear algebra operations on terabyte-sized matrices.

Solution:
Ripples: Distributed computations with MPI on thousands of cores.

Extensively tested on simulated data.



PROBABILITY OF THE PRESENCE OF A SUBHALO

mock without subhalo
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Greyscale: difference in log posterior between a model which
includes a subhalo and a smooth model (no subhalos)

Hezaveh et al. ApJ 2016



SIMULATED IMAGES WITH AND WITHOUT A SUBHALO

Main lensing galaxy mass ~ 1012 Mgun

Subhalo masses ~ 107—109 Mesun

SMOOTH GALAXY SMOOTH GALAXY + SUBHALO










DETECTION OF A 109 Msyn SUBHALO
IN SDP.81

BLUE: HST
RED: ALMA

Hezaveh et al. ApJ 2016



PARAMETERS OF THE DENSITY
DISTRIBUTION, INCLUDING THE
DETECTED SUBHALO
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EXCLUSION MAPS FOR OTHER SUBHALOS
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CONSTRAINTS ON THE MASS FUNCTION OF
SUBHALOS IN THE HOST HALO
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COMPARISON TO THEORETICAL PREDICTIONS

dn/d log Mg (kpc”Q)
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HOW TO IMPROVE OUR CONSTRAINTS
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SURFACE BRIGHTNESS CORRELATIONS

lensed by a field lensed by a field
with low-k power with high-k power

smooth density field

SURFACE BRIGHTNESS CORRELATIONS => POWER SPECTRUM OF THE DENSITY FIELD



POWER SPECTRUM OF

COVARIANCE OF
THE DENSITY FIELD

DEFLECTIONS
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FORECAST FOR MEASURING THE
DM SUBHALO POWER SPECTRUM WITH ALMA
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HOW TO IMPROVE OUR CONSTRAINTS
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SPT 0532 SPT 0418
0.025 ARCSEC RESOLUTION (2018) 0.025 ARCSEC RESOLUTION (2018)

BLUE: HST BLUE: HST

12 hours with JWST in ERS
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FORECASTS FOR N LENSES

1SST

3-4 years

ruled out at 20

This year

Y lenses




LOOKING INTO THE FUTURE

1- New Lenses

2- New Telescopes

3- New Analysis Methods



Looking into the future:

1- New Lenses

For future surveys we find that, assuming Poisson limited lens
galaxy subtraction, searches of the DES, LSST, and Euclid data sets
should discover 2400, 120000, and 170000 galaxy—galaxy strong

lenses, respectively

Collett, ApJ. 2015

WHY DO WE NEED SO MANY LENSES?

1- Statistical precision from the analysis of
a large population.

2- Finding rare systems:
Lensed supernovae
Double-plane lenses
Lensing systems at extreme redshifts




Looking into the future:

2- Existing and New Telescopes

ALMA GMT
In operation 2020s
JWST IMT




(

Looking into the future:

3- Analysis Methods

How are we going to analyze 170,000 lenses?

Lens modeling is very slow.

Even a simple lens model can take
2-3 days of human and CPU time,

translating to 1,400 years!

Even if we pay 100 people to work
on this, it'll be 14 years!

Old method are simply not feasible.
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Lens modeling sweatshop of 2022



CAN WE OBTAIN THE LENS PARAMETERS USING NEURAL NETWORKS?
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Universal approximation theorem:
Neural nets can approximate any function to an arbitrary accuracy.



MEASURING PHYSICAL PROPERTIES
FROM IMAGES OF STRONG LENSES

maximum likelihood lens modeling

SIMULATED IMAGE

Neural

| Network

OBSERVED IMAGE



NEURAL NETWORK OUTPUTS: LENSING PARAMETERS




PRODUCING THE TRAINING DATA

GET A REAL IMAGE OF A GALAXY LENS IT BLUR IT WITH A PSF

APPLY RANDOM MASKS ADD COSMIC RAYS ADD NOISE



TRAINING

© Half a million (simulated) images for training.

o Trained multiple networks: e.g., Inception.v4 (hundreds of layers)

> Training time: About 1-2 day(s) on a single GPU
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TEST DATA

9 HST IMAGES

000 SIMULATED IMAGES

I/

10

Hezaveh, Perreault Levasseur, Marshall, Nature, 2017



ESTIMATING LENSING PARAMETERS WITH NEURAL NETS

10 million times faster than max-likelihood lens modeling.
0.01 seconds on a single GPU

Hezaveh, Perreault Levasseur, Marshall, Nature, 2017



STANDARD NEURAL NETWORKS:
WEIGHTS HAVE FIXED, DETERMINISTIC VALUES

INPUT HIDDEN OUTPUT
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BAYESIAN NEURAL NETWORKS:

WEIGHTS ARE DEFINED BY PROBABILITY DISTRIBUTIONS

INPUT HIDDEN OUTPUT
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UNCERTAINTIES OF THE ESTIMATED PARAMETERS
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RECONSTRUCTING THE BACKGROUND SOURCES WITH
THE RECURRENT INFERENCE MACHINE
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Morningstar, Perreault Levasseur, Hezaveh et al. 2019



RECONSTRUCTING THE BACKGROUND SOURCES WITH
THE RECURRENT INFERENCE MACHINE

OBSERVED RECONSTRUCTED
IMAGE TRYB SRURCE

Recurrent

Inference Machine

Morningstar, Perreault Levasseur, Hezaveh et al. 2019



Observed Image RIM Reconstruction

Linear Inversion
Ground Truth

Morningstar, Perreault Levasseur, Hezaveh et al. 2019



BACKGROUND SOURCE RECONSTRUCTION:
COMPARISON TO MAXIMUM LIKELIHOOD METHODS
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TRAIN ON COSMOLOGICAL SIMULATIONS

ILLUSTRISTNG SIMULATION

Perreault Levasseur, et al. in prep



TRAIN ON COSMOLOGICAL SIMULATIONS
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Perreault Levasseur, et al. in prep



PIXELLATED DENSITY MAP RECONSTRUCTION

OBSERVATION PREDICTION
(NETWORKS' INPUT) TRUE DENSITY MAP (NETWORKS' OUTPUT)

(LOG PROJECTED DENSITY) (LOG PROJECTED DENSITY)

Perreault Levasseur, et al. in prep



PIXELLATED DENSITY MAP RECONSTRUCTION

OBSERVATION PREDICTION
(NETWORKS' INPUT) TRUE DENSITY MAP (NETWORKS' OUTPUT)

(LOG PROJECTED DENSITY) (LOG PROJECTED DENSITY)

Perreault Levasseur, et al. in prep



PIXELLATED DENSITY MAP RECONSTRUCTION

OBSERVATION PREDICTION
(NETWORKS' INPUT) TRUE DENSITY MAP (NETWORKS' OUTPUT)

(LOG PROJECTED DENSITY) (LOG PROJECTED DENSITY)

Perreault Levasseur, et al. in prep



COULD THESE NETWORKS EVER GENERALIZE BEYOND THEIR TRAINING DATA?

OBSERVATION PREDICTION
(NETWORKS' INPUT) TRUE DENSITY MAP (NETWORKS' OUTPUT)

Perreault Levasseur, et al. in prep



COULD THESE NETWORKS EVER GENERALIZE BEYOND THEIR TRAINING DATA?

OBSERVATION PREDICTION
(NETWORKS' INPUT) TRUE DENSITY MAP (NETWORKS' OUTPUT)

Perreault Levasseur, et al. in prep



COULD THESE NETWORKS EVER GENERALIZE BEYOND THEIR TRAINING DATA?

OBSERVATION PREDICTION
(NETWORKS' INPUT) TRUE DENSITY MAP (NETWORKS' OUTPUT)

Perreault Levasseur, et al. in prep



COULD THESE NETWORKS EVER GENERALIZE BEYOND THEIR TRAINING DATA?

OBSERVATION PREDICTION
(NETWORKS' INPUT) TRUE DENSITY MAP (NETWORKS' OUTPUT)

Perreault Levasseur, et al. in prep



ALMA

LENSES

JWST TMT

ANALYSIS METHODS
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THANK YOU!



