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STRONG GRAVITATIONAL LENSING

Formation of multiple images of a single distant object due to the 
deflection of its light by the gravity of intervening structures.

z ~ 0.1 — 1.0

z ~ 2.0 — 7.0





Two images of a 
background 

quasar

Lensing galaxy



Strong lenses produce arcs





1- Background source: 

Use strong lensing as a cosmic telescope. 

2- Foreground lens: 

Use lensing to probe the distribution of matter in the lensing structures. 

* Other things (cosmology, testing GR, etc.)

SCIENCE MOTIVATIONS FOR STRONG LENSING



1 - Use strong lensing as a cosmic telescope. 
Lensing magnifies the images of sources and makes them appear  brighter.  
This allows us to study some of the most distant galaxies of the universe that 
would have been otherwise below our sensitivity or resolution limits.

SCIENCE MOTIVATIONS FOR STRONG LENSING

SPT-SMG COLLABORATION:

• Vieira et al. 2011
• Greve et al. 2012
• Vieira et al. 2013
• Weiss et al. 2013
• Hezaveh et al. 2013

• Aravena et al. 2013
• Bothwell et al. 2013
• Spilker et al. 2014
• Gullberg et al. 2015
• Spilker et al. 2014

• Gullberg et al. 2015
• Spilker et al. 2015
• Ma et al. 2015
• Welikala et al. 2016 
• Bethermin et al. 2016 

• Aravena et al. 2016
• Strandet et al. 2016
• Spilker et al. 2016
• Ma et al. 2016
• Strandet et al. 2017

Use lenses to study star formation in the background galaxies

unlensed image lensed image



2 - Use lensing to probe the distribution of matter in the lensing structures. 
Distortions in images are caused by gravity. 
They can be used to map the distribution of matter in the lens.  
Particularly useful for studying dark matter.

SCIENCE MOTIVATIONS FOR STRONG LENSING



SMALL-SCALE STRUCTURE OF DARK MATTER

Large scale structure is very 
well measured.

Small scale distribution of 
dark matter i s not wel l 
understood.



DISCREPANCY BETWEEN THE NUMBER OF CDM SUBHALOS AND MW DWARF SATELLITES

THE MISSING SATELLITES PROBLEM

THEORY: N~ 10000 OBSERVATION N~50

N-BODY SIMULATIONS OBSERVED MW SATELLITES



SOLUTIONS

Cold Dark Matter 2 keV Warm Dark Matter

1 - Modify galaxy formation models 2 - Modify the dark matter model

Lovell et al., MNRAS, 2012



STRONG GRAVITATIONAL LENSING



SUBSTRUCTURE LENSING



SUBSTRUCTURE LENSING

+

dark matter  
subhalo





SPOT THE DIFFERENCE?

Main lensing galaxy mass ~ 1012—1013 Msun

Subhalo masses ~ 107—109   Msun

SMOOTH GALAXY SMOOTH GALAXY + SUBHALO



Physical properties that can be constrained from 
lensing images (lensing parameters): 

1: Morphology of the background source  
(the true, undistorted image of the candle)

2: Matter distribution in the lens  
(the shape of the wineglass) 

MEASURING PHYSICAL PROPERTIES  
FROM IMAGES OF STRONG LENSES



MEASURING PHYSICAL PROPERTIES  
FROM IMAGES OF STRONG LENSES

F(simulator)

simulating lenses

SIMULATED IMAGE



OBSERVED IMAGE

?

?

maximum likelihood lens modeling

SIMULATED IMAGE

F(simulator)

F-1

MEASURING PHYSICAL PROPERTIES  
FROM IMAGES OF STRONG LENSES

Likelihood
function

A MEASURE OF 
SIMILARITY



OBSERVED VISIBILITIES

maximum likelihood lens modeling
SIMULATED VISIBILITIES 

 (A DISCRETE SET OF FOURIER COMPONENTS) 

F(simulator)

MEASURING PHYSICAL PROPERTIES  
FROM IMAGES OF STRONG LENSES

Likelihood
function

A MEASURE OF 
SIMILARITY



SUBHALO DETECTION: 
COMPARE A SMOOTH MODEL WITH A MODEL WHICH INCLUDES SUBHALOS

?

?

OBSERVED IMAGE

SIMULATED IMAGE

Likelihood
function

BACKGROUND 
SOURCE



LENS MODELING PIPELINE

Millions of visibilities. 

Tens of thousands of parameters. 

Dense linear algebra operations on terabyte-sized matrices. 

Ripples: Distributed computations with MPI on thousands of cores. 

Extensively tested on simulated data.

Problem:

Solution:



PROBABILITY OF THE PRESENCE OF A SUBHALO

Greyscale:  difference in log posterior between a model which 
includes a subhalo and a smooth model (no subhalos)

Hezaveh et al. ApJ  2016



SIMULATED IMAGES WITH AND WITHOUT A SUBHALO

Main lensing galaxy mass ~ 1012 Msun

Subhalo masses ~ 107—109   Msun

SMOOTH GALAXY SMOOTH GALAXY + SUBHALO







BLUE: HST
RED: ALMA

+

DETECTION OF A 109 MSUN SUBHALO 
IN SDP.81

Hezaveh et al. ApJ  2016



PARAMETERS OF THE DENSITY 
DISTRIBUTION, INCLUDING THE 

DETECTED SUBHALO

Hezaveh et al. ApJ  2016



EXCLUSION MAPS FOR OTHER SUBHALOS

Hezaveh et al. ApJ  2016



CONSTRAINTS ON THE MASS FUNCTION OF 
SUBHALOS IN THE HOST HALO

Hezaveh et al. ApJ  2016



COMPARISON TO THEORETICAL PREDICTIONS

Fiacconi, Madau et al. ApJ, 2016



Measuring the collective 
signal of many subhalos

Hezaveh et al. ApJ  2016

HOW TO IMPROVE OUR CONSTRAINTS









smooth densi ty fie ld l ensed by a fie ld
wi th l ow-k power

l ensed by a fie l d
wi th high-k power

SURFACE BRIGHTNESS CORRELATIONS

SURFACE BRIGHTNESS CORRELATIONS => POWER SPECTRUM OF THE DENSITY FIELD
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Hezaveh et al., JCAP, 2016
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FORECAST FOR MEASURING THE  
DM SUBHALO POWER SPECTRUM WITH ALMA

BLACK: ~10 HR INTEGRATION 
RED: ~40 HR INTEGRATION

Hezaveh et al., JCAP, 2016

Predicted power spectrum 
from Via Lactea II simulation. 
Kuhlen, Madau, Silk, Science, 2009



More observations

Measuring the collective 
signal of many subhalos

Hezaveh et al. ApJ  2016

HOW TO IMPROVE OUR CONSTRAINTS



SPT 0418 
0.025 ARCSEC RESOLUTION (2018)

12 hours with JWST in ERS

BLUE: HST
RED: ALMA

SPT 0532 
0.025 ARCSEC RESOLUTION (2018)

BLUE: HST
RED: ALMA



FORECASTS FOR N LENSES
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1- New Lenses 

2- New Telescopes

3- New Analysis Methods

LOOKING INTO THE FUTURE



Looking into the future: 
1- New Lenses

For future surveys we find that, assuming Poisson limited lens 
galaxy subtraction, searches of the DES, LSST, and Euclid data sets 
should discover 2400, 120000, and 170000 galaxy–galaxy strong 
lenses, respectively

Collett, ApJ. 2015

1- Statistical precision from the analysis of 
a large population. 

2- Finding rare systems: 
Lensed supernovae 
Double-plane lenses 
Lensing systems at extreme redshifts

WHY DO WE NEED SO MANY LENSES?



Looking into the future: 
2- Existing and New Telescopes

TMT 
2020s

GMT 
2020s

ALMA 
In operation

JWST 
???



Lens modeling is very slow.  
Even a simple lens model can take 
2-3 days of human and CPU time, 
translating to 1,400 years! 
Even if we pay 100 people to work 
on this, it’ll be 14 years!   
Old method are simply not feasible.

Lens modeling sweatshop of 2022 

Looking into the future: 
3- Analysis Methods

How are we going to analyze 170,000 lenses?



CAN WE OBTAIN THE LENS PARAMETERS USING NEURAL NETWORKS?

INPUT OUTPUTW

Universal approximation theorem:  
Neural nets can approximate any function to an arbitrary accuracy.



OBSERVED IMAGE

?

?

SIMULATED IMAGE

Likelihood
function

F(simulator)

F-1

MEASURING PHYSICAL PROPERTIES  
FROM IMAGES OF STRONG LENSES

Neural 
Network

maximum likelihood lens modeling



NEURAL NETWORK OUTPUTS: LENSING PARAMETERS



PRODUCING THE TRAINING DATA

GET A REAL IMAGE OF A GALAXY LENS IT BLUR IT WITH A PSF

ADD NOISEADD COSMIC RAYSAPPLY RANDOM MASKS

Final training image

1 2 3

45



Half a million (simulated) images for training. 

Trained multiple networks: e.g., Inception.v4 (hundreds of layers) 

Training time: About 1-2 day(s) on a single GPU

TRAINING

Inception.v4 



TEST DATA

9 HST IMAGES10,000 SIMULATED IMAGES

Hezaveh, Perreault Levasseur, Marshall, Nature, 2017



ESTIMATING LENSING PARAMETERS WITH NEURAL NETS

10 million times faster than max-likelihood lens modeling. 
0.01 seconds on a single GPU

Hezaveh, Perreault Levasseur, Marshall, Nature, 2017



k

STANDARD NEURAL NETWORKS: 
WEIGHTS HAVE FIXED, DETERMINISTIC VALUES



k

BAYESIAN NEURAL NETWORKS: 
WEIGHTS ARE DEFINED BY PROBABILITY DISTRIBUTIONS



UNCERTAINTIES OF THE ESTIMATED PARAMETERS

EXAMPLE: LENSING FLUX 
MAGNIFICATION

Perreault Levasseur, Hezaveh, Wechsler, ApJL, 2017



RECONSTRUCTING THE BACKGROUND SOURCES WITH  
THE RECURRENT INFERENCE MACHINE

Morningstar, Perreault Levasseur, Hezaveh et al. 2019



RECONSTRUCTED 
SOURCE

OBSERVED  
IMAGE TRUE SOURCE

Recurrent 
Inference Machine

Morningstar, Perreault Levasseur, Hezaveh et al. 2019

RECONSTRUCTING THE BACKGROUND SOURCES WITH  
THE RECURRENT INFERENCE MACHINE



Morningstar, Perreault Levasseur, Hezaveh et al. 2019



BACKGROUND SOURCE RECONSTRUCTION: 
COMPARISON TO MAXIMUM LIKELIHOOD METHODS

Morningstar, Perreault Levasseur, Hezaveh et al. 2019
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TRAIN ON COSMOLOGICAL SIMULATIONS

ILLUSTRISTNG SIMULATION
Perreault Levasseur, et al. in prep



Perreault Levasseur, et al. in prep

TRAIN ON COSMOLOGICAL SIMULATIONS



PIXELLATED DENSITY MAP RECONSTRUCTION

OBSERVATION 
(NETWORKS’ INPUT) TRUE DENSITY MAP

PREDICTION 
(NETWORKS’ OUTPUT)

(LOG PROJECTED DENSITY) (LOG PROJECTED DENSITY)

Perreault Levasseur, et al. in prep



OBSERVATION 
(NETWORKS’ INPUT) TRUE DENSITY MAP

PIXELLATED DENSITY MAP RECONSTRUCTION

PREDICTION 
(NETWORKS’ OUTPUT)

(LOG PROJECTED DENSITY) (LOG PROJECTED DENSITY)

Perreault Levasseur, et al. in prep



PIXELLATED DENSITY MAP RECONSTRUCTION

OBSERVATION 
(NETWORKS’ INPUT) TRUE DENSITY MAP

PREDICTION 
(NETWORKS’ OUTPUT)

(LOG PROJECTED DENSITY) (LOG PROJECTED DENSITY)

Perreault Levasseur, et al. in prep



COULD THESE NETWORKS EVER GENERALIZE BEYOND THEIR TRAINING DATA? 
 

OBSERVATION 
(NETWORKS’ INPUT) TRUE DENSITY MAP

PREDICTION 
(NETWORKS’ OUTPUT)

Perreault Levasseur, et al. in prep
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OBSERVATION 
(NETWORKS’ INPUT) TRUE DENSITY MAP
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LENSES

TMT GMTALMA JWST

TELESCOPES

ANALYSIS METHODS



THANK YOU!


